
Using SDL_bgi

Although SDL_bgi is almost perfectly compatible with the original BGI library, a
few minor differences were introduced to take advantage of modern SDL graphics.
You don’t want a slow library!

Compiling programs
To compile a C or C++ program on GNU/Linux or macOS you can use the gcc
or clang compiler:

$ gcc -o program program.c -lSDL_bgi -lSDL2

To compile a program in MSYS2 + mingw-w64:

$ gcc -o program.exe program.c -lmingw32 -L/mingw64/bin \
-lSDL_bgi -lSDL2main -lSDL2 # -mwindows

The -mwindows switch creates a window-only program, i.e. a terminal is not
started. Beware: functions provided by stdio.h will not work if you don’t
start a terminal. Your program will have to rely on mouse input only!

Code::Blocks users should read the file howto_CodeBlocks.md.

Dev-C++ users should read the file howto_Dev-Cpp.md.

Windows users must declare the main() function as:

int main (int argc, char *argv[])

even if argc and argv are not used. Your program will not compile if you use a
different main() definition (i.e. int main (void)), because of conflict with the
WinMain() definition. It’s an SDL2 issue; please consult https://wiki.libsdl.org/
FAQWindows for details.

Most old programs that use the original BGI library should compile unmodified.
For instance,

int gd = DETECT, gm;
initgraph (&gd, &gm, "");

opens an 800x600 window, mimicking SVGA graphics. If the environment
variable SDL_BGI_RES is VGA, window resolution will be 640x480.

Minimal dos.h and conio.h are provided in the test/ directory; they’re good
enough to compile the original bgidemo.c unmodified, on Unix-like platforms.

Please note that non-BGI functions are not implemented. If you need conio.h
for GNU/Linux, please see the ncurses-based implementation https://github.
com/nowres/conio-for-linux.

To specify the window size, you can use the new SDL driver:

1

https://wiki.libsdl.org/FAQWindows
https://wiki.libsdl.org/FAQWindows
https://github.com/nowres/conio-for-linux
https://github.com/nowres/conio-for-linux


gd = SDL;
gm = <mode>;

where <mode> can be one of the following:

CGA 320x200
SDL_320x200 320x200
EGA 640x350
SDL_640x480 640x350
VGA 640x480
SDL_640x480 640x480
SVGA 800x600
SDL_800x600 800x600
SDL_1024x768 1024x768
SDL_1152x900 1152x900
SDL_1280x1024 1280x1024
SDL_1366x768 1366x768
SDL_FULLSCREEN fullscreen

You may want to use initwindow(int width, int height) instead.

SDL_bgi.h defines the _SDL_BGI_H constant. You can check for its presence and
write programs that employ SDL_bgi extensions; please have a look at the test
program fern.c.

Screen Refresh
The only real difference between the original BGI and SDL_bgi is the way
the screen is refreshed. In BGI, every graphics element drawn on screen was
immediately displayed. This was a terribly inefficient way of drawing stuff: the
screen should be refreshed only when the drawing is done. For example, in SDL2
this action is performed by SDL_RenderPresent().

You can choose whether to open the graphics system using initgraph(), which
toggles BGI compatibility on and forces a screen refresh after every graphics
command, or using initwindow() that leaves you in charge of refreshing the
screen when needed, using the new function refresh().

The first method is fully compatible with the original BGI, but it also painfully
slow. An experimental feature is ‘auto mode’: if the environment variable
SDL_BGI_RATE is set to auto, screen refresh is automatically performed; this is
much faster than the default. This variable may also contain a refresh rate;
e.g. 60. Unfortunately, auto mode may not work on some NVIDIA graphic cards.

As a tradeoff between performance and speed, a screen refresh is also per-
formed by getch(), kbhit(), and delay(). Functions sdlbgifast(void),
sdlbgislow(void), and sdlbgiauto(void) are also available. They trigger
fast, slow, and auto mode, respectively.

Documentation and sample BGI programs are available at this address:

2



http://www.cs.colorado.edu/~main/cs1300/doc/bgi/

Nearly all programs can be compiled with SDL_bgi.

The original Borland Turbo C 2.0 manual is also available at:

https://archive.org/details/bitsavers_borlandturReferenceGuide1988_
19310204.

Avoid Slow Programs
This is possibly the slowest SDL_bgi code one could write:

while (! event ()) {
putpixel (random(x), random(y), random(col));
refresh ();

}

This code, which plots pixels until an event occurs (mouse click or key press),
is extremely inefficient. First of all, calling event() is relatively expensive;
secondly, refreshing the screen after plotting a single pixel is insane. You should
write something like this:

counter = 0;
stop = 0;
while (! stop) {

putpixel (random(x), random(y), random(col));
if (1000 == ++counter) {

if (event())
stop = 1;

refresh ();
counter = 0;

}
}

In general, you should use kbhit(), mouseclick() and event() sparingly,
because they’re slow.

Differences
• The following functions may be called but do nothing:

_graphfreemem - unneeded
_graphgetmem - unneeded
installuserdriver - it makes no sense in SDL
registerbgidriver - it makes no sense in SDL
registerbgifont - it makes no sense in SDL_bgi
setgraphbufsize - unneeded

3

http://www.cs.colorado.edu/~main/cs1300/doc/bgi/
https://archive.org/details/bitsavers_borlandturReferenceGuide1988_19310204
https://archive.org/details/bitsavers_borlandturReferenceGuide1988_19310204


• setpalette() only affects future drawing. That is, you can’t get a “rotat-
ing palette animation” as in Turbo C.

• putimage() bitwise operations (XOR_PUT, OR_PUT etc.) are applied to
RGB colour components. This is apparently not the same behaviour as
old Turbo C.

• setusercharsize() also works with DEFAULT_FONT.

Colours
The default BGI palette includes 16 named colours (BLACK. . . WHITE); standard
BGI functions use this palette. The colours don’t have the same RGB values as
the original BGI colours (the palette is brighter); the original RGB values will
be used if the environment variable SDL_BGI_PALETTE is set to BGI.

An extended ARGB palette of PALETTE_SIZE additional colours can be created
and accessed using functions described below. Please see the example programs
in the test/ directory.

Fonts
By default, the original proprietary .CHR fonts are implemented using free
Hershey fonts. Turbo C 2.01 only had the first four, while Turbo C++ added
six more fonts:

TRIP.CHR (TRIPLEX_FONT) --> timesrb
LITT.CHR (SMALL_FONT) --> small
SANS.CHR (SANS_SERIF_FONT) --> futuram
GOTH.CHR (GOTHIC_FONT) --> gothgbt
SCRI.CHR (SCRIPT_FONT) --> cursive
SIMP.CHR (SIMPLEX_FONT) --> futural
TSCR.CHR (TRIPLEX_SCR_FONT) --> rowmant
LCOM.CHR (COMPLEX_FONT) --> timesr
BOLD.CHR (BOLD_FONT) --> (timesrb)
EURO.CHR (EUROPEAN_FONT) --> (timesrb)

Please note that EURO and BOLD have no Hershey equivalent; they are replaced
by Hershey timesrb.

Hershey fonts only support characters in the ASCII range 32-127, as in Turbo C
2.01. Font metrics are the same as the original .CHR fonts.

Preliminary .CHR font support is available. If a .CHR font exists in the same
directory as the running program, it will be used instead of its Hershey equivalent.
However, font metrics are not pixel-perfect yet.

.CHR fonts support was added by Marco Diego Aurélio Mesquita.

4



Additions
Some functions and macros have been added to add functionality and provide
compatibility with other BGI implementations (namely, Xbgi and WinBGIm).

Further, the following variables (declared in SDL_bgi.h) are accessible to the
programmer:

SDL_Window *bgi_window;
SDL_Renderer *bgi_renderer;
SDL_Texture *bgi_texture;

and can be used by native SDL2 functions; see example in test/sdlbgidemo.c.

Screen and Windows Functions

• void initwindow(int width, int height) lets you open a window
specifying its size.

• void detectgraph(int *gd, int *gm) returns SDL, SDL_FULLSCREEN.

• void setwinoptions(char *title, int x, int y, Uint32 flags)
lets you specify the window title (default is SDL_bgi), window position,
and some SDL2 window flags OR’ed together. In particular, you can get
non-native fullscreen resolution with:

setwinoptions ("", -1, -1, SDL_WINDOW_FULLSCREEN);
initwindow (800, 600);

• void sdlbgifast(void) triggers “fast mode” even if the graphics system
was opened with initgraph(). Calling refresh() is needed to display
graphics.

• void sdlbgislow(void) triggers “slow mode” even if the graphics system
was opened with initwindow(). Calling refresh() is not needed.

• void sdlbgiauto(void) triggers automatic screen refresh. Note: it may
not work on some graphics cards.

Multiple Windows Functions

Subsequent calls to initgraph() or initwindow() make it possible to open
several windows; only one of them is active (= being drawn on) at any given
time, regardless of mouse focus.

Functions setvisualpage() and setactivepage() only work properly in single
window mode.

• int getcurrentwindow() returns the active window identifier.

• void setcurrentwindow(int id) sets the current active window. id is
an integer identifier, as returned by getcurrentwindow().

5



• void closewindow(int id) closes a window of given id.

Colour Functions

• void setrgbpalette(int color, int r, int g, int b) sets an addi-
tional palette containing RGB colours (up to MAXRGBCOLORS + 1). See
example in test/mandelbrot.c.

• void setrgbcolor(int col) and void setbkrgbcolor(int col) are
the RGB equivalent of setcolor(int col) and setbkcolor(int col).
col is an allocated colour entry in the RGB palette.

• COLOR(int r, int g, int b) can be used as an argument whenever
a colour value is expected (e.g. setcolor() and other functions). It’s
an alternative to setrgbcolor(int col) and setbkrgbcolor(int col).
Allocating colours with setrgbpalette() and using setrgbcolor() is
much faster, though.

• COLOR32(Uint32 color) works like COLOR(), but accepts a colour argu-
ment as an ARGB integer.

• colorRGB(int r, int g, int b) can be used to compose a 32 bit colour.
This macro is typically used to set values in memory buffers.

• IS_BGI_COLOR(int c) and IS_RGB_COLOR(int c) return 1 if the current
colour is standard BGI or RGB, respectively. The argument is actually
redundant.

• ALPHA_VALUE(int c), RED_VALUE(int c), GREEN_VALUE(int c), and
BLUE_VALUE(int c) return the A, R, G, B component of an RGB colour
in the extended palette.

• setalpha(int col, Uint8 alpha) sets the alpha component of colour
‘col’.

• setblendmode(int blendmode) sets the blending mode for screen refresh
(SDL_BLENDMODE_NONE or SDL_BLENDMODE_BLEND).

Buffer Functions

• getbuffer (Uint32 *buffer) and putbuffer (Uint32 *buffer)
copy the current window contents to a buffer, and the reverse. Using
getbuffer() and putbuffer() is faster than direct pixel manipulation,
as shown by test/psychedelia.c

• getlinebuffer (int y, Uint32 *linebuffer) and putlinebuffer
(int y, Uint32 *linebuffer) work like getbuffer() and putbuffer(),
but on a single line of pixels.

6



Mouse Functions

• int mouseclick(void) returns the code of the mouse button that was
clicked, or 0 if none was clicked. Mouse buttons and movement constants
are defined in SDL_bgi.h:

WM_LBUTTONDOWN
WM_MBUTTONDOWN
WM_RBUTTONDOWN
WM_WHEEL
WM_WHEELUP
WM_WHEELDOWN
WM_MOUSEMOVE

• int mousex(void) and int mousey(void) return the mouse coordinates
of the last click.

• int ismouseclick(int btn) returns 1 if the btn mouse button was
clicked.

• void getmouseclick(int kind, int *x, int *y) sets the x, y coordi-
nates of the last button click expected by ismouseclick().

• void getleftclick(void), void getmiddleclick(void), and void
getrightclick(void) wait for the left, middle, and right mouse button
to be clicked and released.

Miscellaneous Functions

• showerrorbox(const char *message) and showinfobox(const char
*message) open a window message box with the specified message.

• void _putpixel(int x, int y) is equivalent to putpixel(int x, int
y, int col), but uses the current drawing colour and the pixel is not
refreshed in slow mode.

• random(range) is defined as macro: rand()%range

• int getch() waits for a key and returns its ASCII code. Special keys and
the SDL_QUIT event are also reported; please see SDL_bgi.h.

• void delay(msec) waits for msec milliseconds.

• int getevent(void) waits for a keypress or mouse click, and returns the
code of the key or mouse button. It also catches and returns SDL_QUIT
events.

• int event(void) is a non-blocking version of getevent().

• int eventtype(void) returns the type of the last event.

7



• void readimagefile(char *filename, int x1, int y1, int x2,
int y2) reads a .bmp file and displays it immediately (i.e. no refresh
needed).

• void writeimagefile(char *filename, int left, int top, int
right, int bottom) writes a .bmp file from the screen rectangle defined
by (left,top–right,bottom).

• void xkbhit(void) returns 1 when any key is pressed, including Shift,
Alt, etc.

The Real Thing
You may want to try the online Borland Turbo C 2.01 emulator at the Internet
Archive:

https://archive.org/details/msdos_borland_turbo_c_2.01.

The bgidemo.c program demonstrates the capabilities of the BGI library. You
can download it and compile it using SDL_bgi; in Windows, you will have to
change its main() definition.

A version of Turbo C++ that is apparently released as Public Domain is available
at:

https://archive.org/details/TurboC_201510

Bugs & Issues
In GNU/Linux, there may be visualisation problems on NVIDIA GK208BM
(GeForce 920M) with nvidia-driver-440. As far as I can say, this is an NVIDIA
driver problem.

Console routines such as getch() may hang or not work properly in MSYS2.
This is a problem in Mingw/MSYS2 console handling.

Probably, this documentation is not 100% accurate. Your feedback is more than
welcome.

8

https://archive.org/details/msdos_borland_turbo_c_2.01
https://archive.org/details/TurboC_201510

	Using SDL_bgi
	Compiling programs
	Screen Refresh
	Avoid Slow Programs
	Differences
	Colours
	Fonts
	Additions
	Screen and Windows Functions
	Multiple Windows Functions
	Colour Functions
	Buffer Functions
	Mouse Functions
	Miscellaneous Functions

	The Real Thing
	Bugs & Issues


