Class interp2_base (o2scl)¶
-
template<class
vec_t
= boost::numeric::ublas::vector<double>, classmat_t
= boost::numeric::ublas::matrix<double>>
classo2scl
::
interp2_base
¶ Two-dimensional interpolation base class [abstract].
Public Functions
-
interp2_base
()¶
-
~interp2_base
()¶
-
double
eval
(double x, double y) const = 0¶ Perform the 2-d interpolation.
-
double
operator()
(double x, double y) const¶ Perform the 2-d interpolation.
-
double
deriv_x
(double x, double y) const = 0¶ Compute the partial derivative in the x-direction.
-
double
deriv_xx
(double x, double y) const = 0¶ Compute the partial second derivative in the x-direction.
-
double
integ_x
(double x0, double x1, double y) const = 0¶ Compute the integral in the x-direction between x=x0 and x=x1.
-
double
deriv_y
(double x, double y) const = 0¶ Compute the partial derivative in the y-direction.
-
double
deriv_yy
(double x, double y) const = 0¶ Compute the partial second derivative in the y-direction.
-
double
integ_y
(double x, double y0, double y1) const = 0¶ Compute the integral in the y-direction between y=y0 and y=y1.
-
double
deriv_xy
(double x, double y) const = 0¶ Compute the mixed partial derivative \( \frac{\partial^2 f}{\partial x \partial y} \).
-
double
eval_gen
(int ix, int iy, double x0, double x1, double y0, double y1) const = 0¶ Compute a general interpolation result.
This computes
\[ \frac{\partial^m}{\partial x^m} \frac{\partial^n}{\partial y^n} f(x,y) \]for \( m \in (-1,0,1,2) \) and \( n \in (-1,0,1,2) \) with the notation\[\begin{split}\begin{eqnarray*} \frac{\partial^{-1}}{\partial x^{-1}} &\equiv & \int_{x_0}^{x_1} f~dx \nonumber \\ \frac{\partial^0}{\partial x^0} &\equiv & \left.f\right|_{x=x_0} \nonumber \\ \frac{\partial^1}{\partial x^1} &\equiv & \left(\frac{\partial f}{\partial x}\right)_{x=x_0} \nonumber \\ \frac{\partial^2}{\partial x^2} &\equiv & \left(\frac{\partial^2 f}{\partial x^2}\right)_{x=x_0} \end{eqnarray*}\end{split}\]and the value of \( x_1 \) is ignored when \( m \geq 0 \) and the value of \( y_1 \) is ignored when \( n \geq 0 \).
Protected Attributes
-
size_t
nx
¶ The number of x grid points.
-
size_t
ny
¶ The number of y grid points.
Private Functions
-
interp2_base
(const interp2_base<vec_t, mat_t>&)¶
-
interp2_base<vec_t, mat_t> &
operator=
(const interp2_base<vec_t, mat_t>&)¶
-