Class eos_had_hlps (o2scl)¶
-
class
o2scl
::
eos_had_hlps
: public o2scl::eos_had_eden_base¶ Schematic EOS from Hebeler et al.
The energy per baryon is
\[ E/A = \left( 3 \pi^2 n_0/2 \right)^{2/3} \frac{1}{2 M} \left\{ \frac{3}{5} \left[ x^{5/3} + (1-x)^{5/3} \right] (2 u)^{2/3}- [(2 \alpha - 4 \alpha_L) x (1-x)+\alpha_L] u + \left[ (2 \eta - 4 \eta_L) x (1-x) + \eta_L \right] u^{\gamma} \right\} \]where \( u = n/n_0 \) .One can fix the values of \( \alpha, \eta, \) and \( \gamma \) by the requirement that the pressure is zero at saturation and by fixing the binding energy and incompressibility.
Note that the original reference has a typo in the pressure in Eq. 3. The \( 2/5 \) factor in front should be \( 1/5 \) .
See Ref. Hebeler13eo .
Constants (all unitless)
-
double
gamma
¶
-
double
alpha
¶
-
double
eta
¶
-
double
alphaL
¶
-
double
etaL
¶
-
eos_had_hlps
()¶
-
~eos_had_hlps
()¶
-
void
fix_coeffs
(double M, double local_n0, double B, double K)¶ Fix ‘alpha’, ‘eta’ and ‘gamma’ from saturation properties.
All inputs must be in \( \mathrm{fm}^{-1} \). This employs a simple iterative method that may not always converge.
-
void
fix_neutron_matter
(double M, double local_n0, double Eneut, double dEneut)¶ Fix ‘alphaL’ and ‘etaL’ from neutron matter EOS and its derivative.
The parameters
M
andEneut
must be in \( \mathrm{fm}^{-1} \) anddEneut
must be in \( \mathrm{fm}^{2} \)
-
void
fix_SL
(double M, double local_n0, double S, double L)¶
-
int
calc_e
(fermion &ln, fermion &lp, thermo <h)¶ Equation of state as a function of density.
-
const char *
type
()¶ Return string denoting type (“eos_had_hlps”)
Protected Attributes
-
quadratic_real_coeff_gsl
quad
¶ To solve quadratic equation for ‘gamma’.
-
double