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1 The Crystallographic
Groups Catalog

The packageCrystCat provides a catalog of crystallographic groups of dimensions 2, 3, and 4 which covers most of
the data contained in the book “Crystallographic groups of four-dimensional space” [BBNWZ78]. It has been brought
into GAP format by Volkmar Felsch.

TheGAP 4 version of the catalog requires the packageCryst, which is loaded automatically. The benefit of this is
that space groups extracted from the catalog now have the rich set of methods provided byCryst at their disposal,
and are no longer dumb lists of generators. Moreover, space groups are now fully supported in both the representation
acting from the left and the representation acting from the right.

In 2001, Bernd Souvignier has discovered an error in the above mentioned book: On page 118, in the tabulation
of enantiomorphic space-group types, it is wrongly claimedthat the (affine) four-dimensional space-group type
08/01/01/002 splits into an enantiomorphic pair of (proper) space-group types. This is indicated by an asterisk pre-
ceding the space-group number. This asterisk has to be removed. As a consequence, the number of four-dimensional
space-group types splitting into enantiomorphic pairs (given on page 11 and page 52 of the book) reduces from 112
to 111. An erratum has been submitted toActa Cryst..

The only implication of this correction for the packageCrystCat is that the output of the function

DisplaySpaceGroupType( 4, 8, 1, 1, 2 );

had to be changed from

#I *Space-group type (4,8,1,1,2); orbit size 2; fp-free

to

#I Space-group type (4,8,1,1,2); orbit size 2; fp-free

This has been done in the releaseGAP 4.3.

1.1 How to access the data of the book

Among others, the catalog offers functions which provide access to the data listed in the Tables 1, 5, and 6 of [BB-
NWZ78]:

• The information on the crystal families listed in Table 1 canbe reproduced using theDisplayCrystalFamily
function.

• Similarly, theDisplayCrystalSystem function can be used to reproduce the information on the crystal systems
provided in Table 1.

• The information given in theQ-class headlines of Table 1 can be displayed by theDisplayQClass function,
whereas theFpGroupQClass function can be used to reproduce the presentations that arelisted in Table 1 for
theQ-class representatives.

• The information given in theZ-class headlines of Table 1 will be covered by the results of theDisplayZClass
function, and the matrix generators of theZ-class representatives can be constructed by calling theMatGroupZ-

Class function.
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• TheDisplaySpaceGroupType and theDisplaySpaceGroupGenerators functions can be used to reproduce
all of the information on the space-group types that is provided in Table 1.

• The normalizers listed in Table 5 can be reproduced by calling theNormalizerZClass function.

• Finally, theCharTableQClass function will compute the character tables listed in Table 6, whereas the isomor-
phism types given in Table 6 may be obtained by calling theDisplayQClass function.

The display functions mentioned in the above list print their output with different indentation. So, calling them in a
suitably nested loop, you may produce a listing in which the information about the objects of different type will be
properly indented as has been done in Table 1 of [BBNWZ78].

1.2 Representation of space groups

Probably the most important function in the catalog is theSpaceGroupBBNWZ function which provides representatives
of the affine classes of space groups. A space group of dimensionn is represented by an(n + 1)-dimensional rational
matrix group as follows.

If S is ann-dimensional space group, then each elements in S is an affine mappings : V → V of ann-dimensionalR-
vector spaceV onto itself. Hences can be written as the product of an appropriate invertible linear mappingg : V → V
and a translation by some translation vectort ∈ V such that, if we write mappings from the left, we haves(v) = g(v)+t
for all v ∈ V.

If we fix a basis ofV and then replace eachv ∈ V by the column vector of its coefficients with respect to that basis
(and henceV by the isomorphic column vector spaceRn×1), we can describe the linear mappingg involved ins by an
n × n matrix Mg ∈ GLn(R) which acts by multiplication from the left on the column vectors inRn×1. Hence, if we
identify V with Rn×1, we haves(v) = Mgv + t for all v ∈ Rn×1.

Moreover, if we extend each column vectorv ∈ Rn×1 to a column[[v], [1]] of lengthn + 1 by adding an entry 1 in the
last position and if we define an(n + 1)× (n + 1) matrix Ms = [[Mg, t], [0, 1]], we have[[s(v)], [1]] = Ms[[v], [1]] for
all v ∈ Rn×1. This means that we can represent the space groupS by the isomorphic groupM(S) = {Ms|s ∈ S}. The
submatricesMg occurring in the elements ofM(S) form ann × n matrix groupP(S), the “point group” ofM(S). In
fact, we can choose the basis ofRn×1 such thatMg ∈ GLn(Z) andt ∈ Qn×1 for all Ms ∈ M(S). In particular, the space
group representatives that are normally used by the crystallographers are of this form, and the book [BBNWZ78] uses
the same convention.

The representation described above is the one usually used by crystallographers. There is, however, an alternative to
the representation of the space group elements by matrices of the form [[Mg, t], [0, 1]] as described above. Instead of
considering the coefficient vectors as columns we may consider them as rows. Then we can associate to each affine
mappings ∈ S an (n + 1) × (n + 1) matrix M′

s = [[M′
g′ , 0], [t

′
, 1]] with M′

g′ ∈ GLn(R) and t′ ∈ R1×n such that
[s(v′), 1] = [v′, 1]M′

s for all v′ ∈ R1×n, and we may representS by the matrix groupM′(S) = {M′
s|s ∈ S}. Again, we

can choose the basis ofR1×n such thatM′
g′ ∈ GLn(Z) andt′ ∈ Q1×n for all M′

s ∈ M′(S).

From the mathematical point of view, both approaches are equivalent. In particular,M(S) andM′(S) are isomorphic,
for instance via the isomorphismτ mappingMs ∈ M(S) to (Mtr

s )
−1. Unfortunately, however, neither of the two is a

good choice for ourGAP catalog.

The first convention, using matrices which act on column vectors from the left, is not consistent with the fact that
actions inGAP are usually from the right.

On the other hand, if we choose the second convention, we run into a problem with the names of the space groups
as introduced in [BBNWZ78]. Any such name does not just describe the abstract isomorphism type of the respective
space groupS, but reflects properties of the matrix groupM(S). In particular, it contains as a leading part the name
of theZ-class of the associated point groupP(S). Since the classification of space groups by affine equivalence is
tantamount to their classification by abstract isomorphism, M′(S) lies in the same affine class asM(S) and hence
should get the same name asM(S). But the point groupP(S) that occurs in that name is not alwaysZ-equivalent to
the point groupP′(S) of M′(S). For example, the isomorphismτ : M(S) → M′(S) defined above maps theZ-class
representative with the parameters[3, 7, 3, 2] (in the notation described below) to theZ-class representative with the
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parameters[3, 7, 3, 3]. In other words: The space group names introduced for the groupsM(S) in [BBNWZ78] lead to
confusing inconsistencies if assigned to the groupsM′(S).

In order to avoid this confusion we decided that the first convention is the lesser evil, and so theGAP catalog follows
the book. In particular, all functions listed in section 1.1use the convention of the book. The space groups, how-
ever, can be constructed in both representations, so that the user can choose the one that seems more appropriate in
the particular situation. The functionSpaceGroupOnLeftBBNWZ constructs a space group in the “crystallographic”
representation acting on the left, whereasSpaceGroupOnRightBBNWZ constructs a space group in the representation
acting on the right, as preferred by GAP. In order to avoid long function names (and in order to avoid mixing groups
in different representations), one can set one’s own default with the functionSetCrystGroupDefaultAction (see
44.7.2), which takes as argument eitherLeftAction of RightAction. SpaceGroupBBNWZ then constructs a space
group in this default representation. Initially, the default is RightAction.

The space groups constructed from the catalog are matrix groups, which in addition have the propertyIsAffineCryst-
GroupOnLeft (or IsAffineCrystGroupOnRight, respectively). The packageCryst provides methods to compute
with such groups.Cryst is necessary for any serious computation with space groups,because the support of plain
GAP for infinite matrix groups (such as space groups) is very limited.

Before we describe all available catalog functions in detail, we have to add two remarks.

Remark 1: The concepts used in this section are defined in chapter 1 (Basic definitions) of [BBNWZ78]. However,
note that the definition of the concept of a crystal system given on page 16 of that book relies on the following
statement aboutQ-classes:

For aQ-classC there is a unique holohedryH such that each f.u. group inC is a subgroup of some f.u. group
in H, but is not a subgroup of any f.u. group belonging to a holohedry of smaller order.

This statement is correct for dimensions 1, 2, 3, and 4, and hence the definition of “crystal system” given on page
16 of [BBNWZ78] is known to be unambiguous for these dimensions. However, there is a counterexample to this
statement in seven-dimensional space so that the definitionbreaks down for some higher dimensions.

Therefore, the authors of the book have since proposed to replace this definition of “crystal system” by the following
much simpler one, which has been discussed in more detail in [NPW81]. To formulate it, we use the intersections of
Q-classes and Bravais flocks as introduced on page 17 of [BBNWZ78], and we define the classification of the set of
all Z-classes into crystal systems as follows:

Definition: A crystal system (introduced as an equivalence class ofZ-classes) consists of full geometric
crystal classes. TheZ-classes of two (geometric) crystal classes belong to the same crystal system if and
only if these geometric crystal classes intersect the same set of Bravais flocks ofZ-classes.

From this definition of a crystal system ofZ-classes one then obtains crystal systems of f.u. groups, ofspace-group
types, and of space groups in the same manner as with the preceding definitions in the book.

The new definition is unambiguous for all dimensions. Moreover, it can be checked from the tables in the book that it
defines the same classification as the old one for dimensions 1, 2, 3, and 4.

It should be noted that the concept of crystal family is well-defined independently of the dimension if one uses the
“more natural” second definition of it at the end of page 17. Moreover, the first definition of crystal family on page 17
defines the same concept as the second one if the now proposed definition of crystal system is used.

Remark 2: The second remark just concerns a different terminology in the tables of [BBNWZ78] and in the current
catalog. In group theory, the number of elements of a finite group usually is called the “order” of the group. This
notation has been used throughout in the book. Here, however, we will follow the GAP conventions and use the term
“size” instead.



6 Chapter 1. The Crystallographic Groups Catalog

1.3 Crystal Families
1 ◮ NrCrystalFamilies( dim )

returns the number of crystal families in case of dimensiondim. It can be used to formulate loops over the crystal
families.

There are 4, 6, and 23 crystal families of dimension 2, 3, and 4, respectively.

gap> n := NrCrystalFamilies( 4 );

23

2 ◮ DisplayCrystalFamily( dim, family )

displays for the specified crystal family essentially the same information as is provided for that family in Table 1 of
[BBNWZ78], namely

• the family name,

• the number of parameters,

• the common rational decomposition pattern,

• the common real decomposition pattern,

• the number of crystal systems in the family, and

• the number of Bravais flocks in the family.

For details see [BBNWZ78].

gap> DisplayCrystalFamily( 4, 17 );

#I Family XVII: cubic orthogonal; 2 free parameters;

#I Q-decomposition pattern 1+3; R-decomposition pattern 1+3;

#I 2 crystal systems; 6 Bravais flocks

gap> DisplayCrystalFamily( 4, 18 );

#I Family XVIII: octagonal; 2 free parameters;

#I Q-irreducible; R-decomposition pattern 2+2;

#I 1 crystal system; 1 Bravais flock

gap> DisplayCrystalFamily( 4, 21 );

#I Family XXI: di-isohexagonal orthogonal; 1 free parameter;

#I R-irreducible; 2 crystal systems; 2 Bravais flocks

1.4 Crystal Systems
1 ◮ NrCrystalSystems( dim )

returns the number of crystal systems in case of dimensiondim. It can be used to formulate loops over the crystal
systems.

There are 4, 7, and 33 crystal systems of dimension 2, 3, and 4,respectively.

gap> n := NrCrystalSystems( 2 );

4

The following two functions are functions of crystal systems.

Each crystal system is characterized by a pair (dim, system) wheredim is the associated dimension, andsystem is the
number of the crystal system.
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2 ◮ DisplayCrystalSystem( dim, system )

displays for the specified crystal system essentially the same information as is provided for that system in Table 1 of
[BBNWZ78], namely

• the number ofQ-classes in the crystal system and

• the identification number, i. e., the triple (dim, system, q-class) described below, of theQ-class that is the holo-
hedry of the crystal system.

For details see [BBNWZ78].

gap> for sys in [ 1 .. 4 ] do DisplayCrystalSystem( 2, sys ); od;

#I Crystal system 1: 2 Q-classes; holohedry (2,1,2)

#I Crystal system 2: 2 Q-classes; holohedry (2,2,2)

#I Crystal system 3: 2 Q-classes; holohedry (2,3,2)

#I Crystal system 4: 4 Q-classes; holohedry (2,4,4)

1.5 Q-Classes
1 ◮ NrQClassesCrystalSystem( dim, system )

returns the number ofQ-classes within the given crystal system. It can be used to formulate loops over theQ-classes.

The following five functions are functions ofQ-classes.

In general, the parameters characterizing aQ-class will form a triple (dim, system, q-class) wheredim is the associated
dimension,system is the number of the associated crystal system, andq-class is the number of theQ-class within the
crystal system. However, in case of dimensions 2 or 3, aQ-class may also be characterized by a pair (dim, IT-number)
whereIT-number is the number in the International Tables for Crystallography [Hah95] of any space-group type lying
in (aZ-class of) thatQ-class, or just by the Hermann-Mauguin symbol of any space-group type lying in (aZ-class of)
thatQ-class.

The Hermann-Mauguin symbols which we use inGAP are the short Hermann-Mauguin symbols defined in the 1983
edition of the International Tables [Hah95], but any occurring indices are expressed by ordinary integers, and bars
are replaced by minus signs. For example, the Hermann-Mauguin symbolP421m will be represented by the string
"P-421m".

2 ◮ DisplayQClass( dim, system, q-class )
◮ DisplayQClass( dim, IT-number )
◮ DisplayQClass( Hermann-Mauguin-symbol )

displays for the specifiedQ-class essentially the same information as is provided for thatQ-class in Table 1 of [BB-
NWZ78] (except for the defining relations given there), namely

• the size of the groups in theQ-class,

• the isomorphism type of the groups in theQ-class,

• the Hurley pattern,

• the rational constituents,

• the number ofZ-classes in theQ-class, and

• the number of space-group types in theQ-class.

For details see [BBNWZ78].
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gap> DisplayQClass( "p2" );

#I Q-class H (2,1,2): size 2; isomorphism type 2.1 = C2;

#I Q-constituents 2*(2,1,2); cc; 1 Z-class; 1 space group

gap> DisplayQClass( "R-3" );

#I Q-class (3,5,2): size 6; isomorphism type 6.1 = C6;

#I Q-constituents (3,1,2)+(3,4,3); ncc; 2 Z-classes; 2 space grps

gap> DisplayQClass( 3, 195 );

#I Q-class (3,7,1): size 12; isomorphism type 12.5 = A4;

#I C-irreducible; 3 Z-classes; 5 space grps

gap> DisplayQClass( 4, 27, 4 );

#I Q-class H (4,27,4): size 20; isomorphism type 20.3 = D10xC2;

#I Q-irreducible; 1 Z-class; 1 space group

gap> DisplayQClass( 4, 29, 1 );

#I *Q-class (4,29,1): size 18; isomorphism type 18.3 = D6xC3;

#I R-irreducible; 3 Z-classes; 5 space grps

Note in the preceding examples that, as pointed out above, the term “size” denotes the order of a representative group
of the specifiedQ-class and, of course, not the (infinite) class length.

3 ◮ FpGroupQClass( dim, system, q-class )
◮ FpGroupQClass( dim, IT-number )
◮ FpGroupQClass( Hermann-Mauguin-symbol )

returns a finitely presented groupF, say, which is isomorphic to the groups in the specifiedQ-class.

The presentation of that group is the same as the corresponding presentation given in Table 1 of [BBNWZ78] except
for the fact that its generators are listed in reverse order.The reason for this change is that, whenever the group in
question is solvable, the resulting generators form a pcgs (as defined in section 45 in the reference manual ofGAP)
if they are numbered “from the top to the bottom”, and the presentation is a power-commutator presentation. The
PcGroupQClass function described next will make use of this fact in order toconstruct a pc group isomorphic toF.

Note that, for anyZ-class in the specifiedQ-class, the matrix group returned by theMatGroupZClass function (see
below) not only is isomorphic toF, but also its generators satisfy the defining relators ofF.

Besides of the usual components,F will have an attributeCrystCatRecord, which is a record with component
parameters, which keeps a list of the parameters that specify the givenQ-class.

gap> F := FpGroupQClass( 4, 20, 3 );

FpGroupQClass( 4, 20, 3 )

gap> GeneratorsOfGroup( F );

[ f1, f2 ]

gap> RelatorsOfFpGroup( F );

[ f1^2*f2^-3, f2^6, f2^-1*f1^-1*f2*f1*f2^-4 ]

gap> Size( F );

12

gap> CrystCatRecord( F ).parameters;

[ 4, 20, 3 ]

4 ◮ PcGroupQClass( dim, system, q-class )
◮ PcGroupQClass( dim, IT-number )
◮ PcGroupQClass( Hermann-Mauguin-symbol )

returns a pc groupP, say, isomorphic to the groups in the specifiedQ-class, if these groups are solvable, or the value
fail (together with an appropriate warning), otherwise.
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P is constructed by first establishing a finitely presented group (as it would be returned by theFpGroupQClass
function described above) and then constructing from it an isomorphic pc group. If the underlying pcgs is not a prime
orders pcgs (see section 45), then it will be refined appropriately (and a warning will be displayed).

Besides of the usual components,P will have an attributeCrystCatRecord, which is a record with component
parameters, which saves a list of the parameters that specify the givenQ-class.

gap> P := PcGroupQClass( 4, 31, 3 );

#I Warning: a non-solvable group can’t be represented as a pc group

fail

gap> P := PcGroupQClass( 4, 20, 3 );

#I Warning: the presentation has been extended to get a prime order pcgs

PcGroupQClass( 4, 20, 3 )

gap> GeneratorsOfGroup( P );

[ f1, f2, f3 ]

gap> Size( P );

12

gap> CrystCatRecord( P ).parameters;

[ 4, 20, 3 ]

5 ◮ CharTableQClass( dim, system, q-class )
◮ CharTableQClass( dim, IT-number )
◮ CharTableQClass( Hermann-Mauguin-symbol )

returns the character tableT, say, of a representative group of (aZ-class of) the specifiedQ-class.

Although the set of characters can be considered as an invariant of the specifiedQ-class, the resulting table will
depend on the order in whichGAP sorts the conjugacy classes of elements and the irreduciblecharacters and hence,
in general, will not coincide with the corresponding table presented in [BBNWZ78].

CharTableQClass proceeds as follows. If the groups in the givenQ-class are solvable, then it first calls thePc-
GroupQClass andRefinedPcGroup functions to get a suitable isomorphic pc group, and then it calls theCharac-
terTable function to compute the character table of that pc group. In the case of the fiveQ-classes of dimension 4
whose groups are not solvable, it first calls theFpGroupQClass function to get an isomorphic finitely presented group,
then it constructs a specially chosen faithful permutationrepresentation of low degree for that group, and finally it
determines the character table of the resulting permutation group again by calling theCharacterTable function.

In general, the above strategy will be much more efficient than the alternative possibilities of calling theCharac-
terTable function for a finitely presented group provided by theFpGroupQClass function or for a matrix group
provided by theMatGroupZClass function.

gap> T := CharTableQClass( 4, 20, 3 );;

gap> Display( T );

CharTableQClass( 4, 20, 3 )

2 2 2 1 1 2 2

3 1 . 1 1 . 1

1a 4a 6a 3a 4b 2a

2P 1a 2a 3a 3a 2a 1a

3P 1a 4b 2a 1a 4a 2a

5P 1a 4a 6a 3a 4b 2a
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X.1 1 1 1 1 1 1

X.2 1 -1 1 1 -1 1

X.3 1 A -1 1 -A -1

X.4 1 -A -1 1 A -1

X.5 2 . 1 -1 . -2

X.6 2 . -1 -1 . 2

A = E(4)

= ER(-1) = i

1.6 Z-Classes
1 ◮ NrZClassesQClass( dim, system, q-class )
◮ NrZClassesQClass( dim, IT-number )
◮ NrZClassesQClass( Hermann-Mauguin-symbol )

returns the number ofZ-classes within the givenQ-class. It can be used to formulate loops over theZ-classes.

The following functions are functions ofZ-classes.

In general, the parameters characterizing aZ-class will form a quadruple (dim, system, q-class, z-class) wheredim is
the associated dimension,system is the number of the associated crystal system,q-class is the number of the associated
Q-class within the crystal system, andz-class is the number of theZ-class within theQ-class. However, in case of
dimensions 2 or 3, aZ-class may also be characterized by a pair (dim, IT-number) whereIT-number is the number
in the International Tables [Hah95] of any space-group typelying in thatZ-class, or just by the Hermann-Mauguin
symbol of any space-group type lying in thatZ-class.

2 ◮ DisplayZClass( dim, system, q-class, z-class )
◮ DisplayZClass( dim, IT-number )
◮ DisplayZClass( Hermann-Mauguin-symbol )

displays for the specifiedZ-class essentially the same information as is provided for thatZ-class in Table 1 of [BB-
NWZ78] (except for the generating matrices of a class representative group given there), namely

• for dimensions 2 and 3, the Hermann-Mauguin symbol of a representative space-group type which belongs to
thatZ-class,

• the Bravais type,

• some decomposability information,

• the number of space-group types belonging to theZ-class,

• the size of the associated cohomology group.

For details see [BBNWZ78].

gap> DisplayZClass( 2, 3 );

#I Z-class (2,2,1,1) = Z(pm): Bravais type II/I; fully Z-reducible;

#I 2 space groups; cohomology group size 2

gap> DisplayZClass( "F-43m" );

#I Z-class (3,7,4,2) = Z(F-43m): Bravais type VI/II; Z-irreducible;

#I 2 space groups; cohomology group size 2

gap> DisplayZClass( 4, 2, 3, 2 );

#I Z-class B (4,2,3,2): Bravais type II/II; Z-decomposable;

#I 2 space groups; cohomology group size 4

gap> DisplayZClass( 4, 21, 3, 1 );

#I *Z-class (4,21,3,1): Bravais type XVI/I; Z-reducible;

#I 1 space group; cohomology group size 1
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3 ◮ MatGroupZClass( dim, system, q-class, z-class )
◮ MatGroupZClass( dim, IT-number )
◮ MatGroupZClass( Hermann-Mauguin-symbol )

returns adim × dim matrix groupM, say, which is a representative of the specifiedZ-class. Its generators satisfy the
defining relators of the finitely presented group which may becomputed by calling theFpGroupQClass function (see
above) for theQ-class which contains the givenZ-class.

The generators ofM are the same matrices as those given in Table 1 of [BBNWZ78]. Note, however, that they will
be listed in reverse order to keep them in parallel to the abstract generators provided by theFpGroupQClass function
(see above).

Besides of the usual components,M will have an attributeCrystCatRecord, which is a record with two components.
The first component isparameters, which saves a list of the parameters that specify the givenZ-class. The second
component isconjugator, whose value is the identity element ofM. Its purpose is to make the resulting record
consistent with those returned by theNormalizerZClass or ZClassRepsDadeGroup functions described below.

gap> M := MatGroupZClass( 4, 20, 3, 1 );

MatGroupZClass( 4, 20, 3, 1 )

gap> for g in GeneratorsOfGroup( M ) do

> Print( "\n" ); PrintArray( g ); od; Print( "\n" );

[ [ 0, 1, 0, 0 ],

[ -1, 0, 0, 0 ],

[ 0, 0, -1, -1 ],

[ 0, 0, 0, 1 ] ]

[ [ -1, 0, 0, 0 ],

[ 0, -1, 0, 0 ],

[ 0, 0, -1, -1 ],

[ 0, 0, 1, 0 ] ]

gap> Size( M );

12

gap> CrystCatRecord( M ).parameters;

[ 4, 20, 3, 1 ]

4 ◮ NormalizerZClass( dim, system, q-class, z-class )
◮ NormalizerZClass( dim, IT-number )
◮ NormalizerZClass( Hermann-Mauguin-symbol )

returns the normalizerN, say, inGL(dim,Z) of the representativedim× dim matrix group which is constructed by the
MatGroupZClass function (see above).

If the size ofN is finite, thenN again lies in someZ-class. In this case,N will have an attributeCrystCatRecord,
which is a record with two components,parameters andconjugator. These contain, respectively, the list of pa-
rameters of thatZ-class, and a matrixg ∈ GL(dim,Z), such thatN = g−1Rg, whereR is the representative group of
thatZ-class.

gap> N := NormalizerZClass( 4, 20, 3, 1 );

NormalizerZClass( 4, 20, 3, 1 )

gap> for g in GeneratorsOfGroup( N ) do

> Print( "\n" ); PrintArray( g ); od; Print( "\n" );
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[ [ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, -1, -1 ] ]

[ [ 1, 0, 0, 0 ],

[ 0, -1, 0, 0 ],

[ 0, 0, -1, -1 ],

[ 0, 0, 1, 0 ] ]

[ [ 0, 1, 0, 0 ],

[ -1, 0, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ] ]

[ [ -1, 0, 0, 0 ],

[ 0, -1, 0, 0 ],

[ 0, 0, -1, 0 ],

[ 0, 0, 0, -1 ] ]

gap> Size( N );

96

gap> CrystCatRecord( N ).parameters;

[ 4, 20, 22, 1 ]

gap> CrystCatRecord( N ).conjugator = One( N );

true

gap> L := NormalizerZClass( 3, 42 );

NormalizerZClass( 3, 3, 2, 4 )

gap> Size( L );

16

gap> CrystCatRecord( L ).parameters;

[ 3, 4, 7, 2 ]

gap> CrystCatRecord( L ).conjugator;

[ [ 0, 0, -1 ], [ 1, 0, 0 ], [ 0, -1, -1 ] ]

gap> M := NormalizerZClass( "C2/m" );

<matrix group of size infinity with 5 generators>

gap> Size( M );

infinity

gap> HasCrystCatRecord( M );

false

1.7 Dade groups

Some of theZ-classes of dimensiond, say, are “maximal” in the sense that the groups in these classes are maximal
finite subgroups ofGL(d,Z). Generalizing a term which is being used for dimension 4, we call the representatives of
these maximalZ-classes theDade groupsof dimensiond.

1 ◮ NrDadeGroups( dim )

returns the number of Dade groups of dimensiondim. It can be used to formulate loops over the Dade groups.

There are 2, 4, and 9 Dade groups of dimension 2, 3, and 4, respectively.
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gap> NrDadeGroups( 4 );

9

2 ◮ DadeGroup( dim, n )

returns thenth Dade group of dimensiondim.

gap> D := DadeGroup( 4, 7 );

MatGroupZClass( 4, 31, 7, 2 )

3 ◮ DadeGroupNumbersZClass( dim, system, q-class, z-class )
◮ DadeGroupNumbersZClass( dim, IT-number )
◮ DadeGroupNumbersZClass( Hermann-Mauguin-symbol )

returns the set of all those integersni for which thenith Dade group of dimensiondim contains a subgroup which, in
GL(dim,Z), is conjugate to the representative group of the givenZ-class.

gap> dadeNums := DadeGroupNumbersZClass( 4, 4, 1, 2 );

[ 1, 5, 8 ]

gap> for d in dadeNums do

> D := DadeGroup( 4, d );

> Print( D, " of size ", Size( D ), "\n" );

> od;

MatGroupZClass( 4, 20, 22, 1 ) of size 96

MatGroupZClass( 4, 30, 13, 1 ) of size 288

MatGroupZClass( 4, 32, 21, 1 ) of size 384

4 ◮ ZClassRepsDadeGroup( dim, system, q-class, z-class, n )
◮ ZClassRepsDadeGroup( dim, IT-number, n )
◮ ZClassRepsDadeGroup( Hermann-Mauguin-symbol, n )

determines in thenth Dade group of dimensiondim all those conjugacy classes whose groups are, inGL(dim,Z),
conjugate to theZ-class representative groupR, say, of the givenZ-class. It returns a list of representative groups of
these conjugacy classes.

Let M be any group in the resulting list.M then has an attributeCrystCatRecord, which is a record with two
components. The componentparameters is the list of parameters of theZ-class ofR, andconjugator is a suitable
matrix g from GL(dim,Z), respectively, such thatM equalsg−1Rg.

gap> DadeGroupNumbersZClass( 2, 2, 1, 2 );

[ 1, 2 ]

gap> ZClassRepsDadeGroup( 2, 2, 1, 2, 1 );

[ MatGroupZClass( 2, 2, 1, 2 )^[ [ 0, 1 ], [ -1, 0 ] ] ]

gap> ZClassRepsDadeGroup( 2, 2, 1, 2, 2 );

[ MatGroupZClass( 2, 2, 1, 2 )^[ [ 1, -1 ], [ 0, -1 ] ],

MatGroupZClass( 2, 2, 1, 2 )^[ [ 1, 0 ], [ -1, 1 ] ] ]

gap> R := last[2];;

gap> CrystCatRecord( R ).parameters;

[ 2, 2, 1, 2 ]

gap> CrystCatRecord( R ).conjugator;

[ [ 1, 0 ], [ -1, 1 ] ]
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1.8 Space groups and space group types
1 ◮ NrSpaceGroupTypesZClass( dim, system, q-class, z-class )
◮ NrSpaceGroupTypesZClass( dim, IT-number )
◮ NrSpaceGroupTypesZClass( Hermann-Mauguin-symbol )

returns the number of space-group types within the givenZ-class. It can be used to formulate loops over the space-
group types.

gap> N := NrSpaceGroupTypesZClass( 4, 4, 1, 1 );

13

The following functions are functions of space-group types.

In general, the parameters characterizing a space-group type will form a quintuple (dim, system, q-class, z-class, sg-
type) wheredim is the associated dimension,system is the number of the associated crystal system,q-class is the
number of the associatedQ-class within the crystal system,z-class is the number of theZ-class within theQ-class,
andsg-type is the space-group type within theZ-class. However, in case of dimensions 2 or 3, you may insteadspecify
aZ-class by a pair (dim, IT-number) or by its Hermann-Mauguin symbol (as described above). Then the function will
handle the first space-group type within thatZ-class, i.e.,sg-type = 1, that is, the corresponding symmorphic space
group (split extension).

2 ◮ DisplaySpaceGroupType( dim, system, q-class, z-class, sg-type )
◮ DisplaySpaceGroupType( dim, IT-number )
◮ DisplaySpaceGroupType( Hermann-Mauguin-symbol )

displays for the specified space-group type some of the information which is provided for that space-group type in
Table 1 of [BBNWZ78], namely

• the orbit size associated with that space-group type and,

• for dimensions 2 and 3, theIT-number and the Hermann-Mauguin symbol.

For details see [BBNWZ78].

gap> DisplaySpaceGroupType( 2, 17 );

#I Space-group type (2,4,4,1,1); IT(17) = p6mm; orbit size 1

gap> DisplaySpaceGroupType( "Pm-3" );

#I Space-group type (3,7,2,1,1); IT(200) = Pm-3; orbit size 1

gap> DisplaySpaceGroupType( 4, 32, 10, 2, 4 );

#I *Space-group type (4,32,10,2,4); orbit size 18

gap> DisplaySpaceGroupType( 3, 6, 1, 1, 4 );

#I *Space-group type (3,6,1,1,4); IT(169) = P61, IT(170) = P65;

#I orbit size 2; fp-free

3 ◮ DisplaySpaceGroupGenerators( dim, system, q-class, z-class, sg-type)
◮ DisplaySpaceGroupGenerators( dim, IT-number )
◮ DisplaySpaceGroupGenerators( Hermann-Mauguin-symbol )

displays the non-translation generators of a representative space group of the specified space-group type without
actually constructing that matrix group. The generators are given in the representation acting from the left on column
vectors.

In more details: Letn = dim be the given dimension, and letM1, . . . ,Mr be the generators of the representativen × n
matrix group of the givenZ-class (this is the group which you will get if you call theMatGroupZClass function
(see above) for thatZ-class). Then, for the given space-group type, theSpaceGroupOnLeftBBNWZ function described
below will construct as representative of that space-grouptype an(n + 1)× (n + 1) matrix group which is generated
by then translations which are induced by the (standard) basis vectors of then-dimensional Euclidian space, andr
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additional matricesS1, . . . , Sr of the formSi =

[

Mi ti
0 1

]

, where then×n submatricesMi are as defined above, and the

ti aren-columns with rational entries. TheDisplaySpaceGroupGenerators function saves time by not constructing
the group, but just displaying ther matricesS1, . . . , Sr.

gap> DisplaySpaceGroupGenerators( "P61" );

#I Non-translation generators of SpaceGroupOnLeftBBNWZ( 3, 6, 1, 1, 4 )

[ [ -1, 0, 0, 0 ],

[ 0, -1, 0, 0 ],

[ 0, 0, 1, 1/2 ],

[ 0, 0, 0, 1 ] ]

[ [ 0, -1, 0, 0 ],

[ 1, -1, 0, 0 ],

[ 0, 0, 1, 1/3 ],

[ 0, 0, 0, 1 ] ]

4 ◮ SpaceGroupOnLeftBBNWZ( dim, system, q-class, z-class, sg-type )
◮ SpaceGroupOnLeftBBNWZ( dim, IT-number )
◮ SpaceGroupOnLeftBBNWZ( Hermann-Mauguin-symbol )

returns a representative,S, of the space group type specified by the arguments.S is returned in the form of an
AffineCrystGroupOnLeft, which acts from the left on column vectors (see also the description of the Dis-

playSpaceGroupGenerators function above). The packageCryst provides methods for the computation with space
groups.

gap> S := SpaceGroupOnLeftBBNWZ( "P61" );

SpaceGroupOnLeftBBNWZ( 3, 6, 1, 1, 4 )

gap> for s in GeneratorsOfGroup( S ) do

> Print( "\n" ); PrintArray( s ); od; Print( "\n" );

[ [ -1, 0, 0, 0 ],

[ 0, -1, 0, 0 ],

[ 0, 0, 1, 1/2 ],

[ 0, 0, 0, 1 ] ]

[ [ 0, -1, 0, 0 ],

[ 1, -1, 0, 0 ],

[ 0, 0, 1, 1/3 ],

[ 0, 0, 0, 1 ] ]

[ [ 1, 0, 0, 1 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ] ]

[ [ 1, 0, 0, 0 ],

[ 0, 1, 0, 1 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ] ]



16 Chapter 1. The Crystallographic Groups Catalog

[ [ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 1 ],

[ 0, 0, 0, 1 ] ]

gap> CrystCatRecord( S ).parameters;

[ 3, 6, 1, 1, 4 ]

The resulting group has an attributeCrystCatRecord, whose componentparameters specifies the given space-
group type.

5 ◮ SpaceGroupOnRightBBNWZ( dim, system, q-class, z-class, sg-type )
◮ SpaceGroupOnRightBBNWZ( dim, IT-number )
◮ SpaceGroupOnRightBBNWZ( Hermann-Mauguin-symbol )
◮ SpaceGroupOnRightBBNWZ( S )

returns a representative,T, of the space group type specified by the arguments.T is returned in the form of an
AffineCrystGroupOnRight, which acts from the right on row vectors. The generators ofT are the transposed
generators (in the same order) of the correspondingSpaceGroupOnLeftBBNWZ, S, specified by the same arguments.
The space groupS is also accepted as argument. The packageCryst provides methods for the computation with space
groups.

gap> T := SpaceGroupOnRightBBNWZ( S );

SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 )

gap> for m in GeneratorsOfGroup( T ) do

> Print( "\n" ); PrintArray( m ); od; Print( "\n" );

[ [ -1, 0, 0, 0 ],

[ 0, -1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 1/2, 1 ] ]

[ [ 0, 1, 0, 0 ],

[ -1, -1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 1/3, 1 ] ]

[ [ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 1, 0, 0, 1 ] ]

[ [ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 1, 0, 1 ] ]

[ [ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 1, 1 ] ]
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6 ◮ SpaceGroupBBNWZ( dim, system, q-class, z-class, sg-type )
◮ SpaceGroupBBNWZ( dim, IT-number )
◮ SpaceGroupBBNWZ( Hermann-Mauguin-symbol )

calls eitherSpaceGroupOnLeftBBNWZ or SpaceGroupOnRightBBNWZ with the same arguments, depending on the
value of the variableCrystGroupDefaultAction.

7 ◮ FpGroupSpaceGroupBBNWZ( S )

returns a finitely presented groupG, say, which is isomorphic toS, whereS is expected to be a space group from the
BBNWZ catalog (acting from the left or from the right). It is chosen such that there is an isomorphism fromG to
S which maps each generator ofG onto the corresponding generator ofS. This means, in particular, that the matrix
generators ofS satisfy the relators ofG. If the factor group ofS by its translation normal subgroup is solvable, then
the presentation returned is a polycyclic power commutatorpresentation.

gap> G := FpGroupSpaceGroupBBNWZ( S );

FpGroupSpaceGroupOnLeftBBNWZ( 3, 6, 1, 1, 4 )

gap> for rel in RelatorsOfFpGroup( G ) do Print( rel, "\n" ); od;

g1^2*g5^-1

g2^3*g5^-1

g2^-1*g1^-1*g2*g1

g3^-1*g1^-1*g3*g1*g3^2

g3^-1*g2^-1*g3*g2*g4*g3^2

g4^-1*g1^-1*g4*g1*g4^2

g4^-1*g2^-1*g4*g2*g4*g3^-1

g4^-1*g3^-1*g4*g3

g5^-1*g1^-1*g5*g1

g5^-1*g2^-1*g5*g2

g5^-1*g3^-1*g5*g3

g5^-1*g4^-1*g5*g4

gap> # Verify that the matrix generators of S satisfy the relators of G.

gap> ForAll( RelatorsOfFpGroup( G ), rel -> One(S) =

> MappedWord( rel, FreeGeneratorsOfFpGroup(G), GeneratorsOfGroup(S) ) );

true
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