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The Crystallographic
Groups Catalog

The packag€rystCat provides a catalog of crystallographic groups of dimens@y3, and 4 which covers most of
the data contained in the book “Crystallographic groupsuoffdimensional space” [BBNWZ78]. It has been brought
into GAP format by Volkmar Felsch.

The GAP 4 version of the catalog requires the pack&ygst, which is loaded automatically. The benefit of this is
that space groups extracted from the catalog now have theseicof methods provided bgryst at their disposal,
and are no longer dumb lists of generators. Moreover, spacgg are now fully supported in both the representation
acting from the left and the representation acting from ifletr

In 2001, Bernd Souvignier has discovered an error in the eéogntioned book: On page 118, in the tabulation
of enantiomorphic space-group types, it is wrongly claintieat the (affine) four-dimensional space-group type
08/01/01/002 splits into an enantiomorphic pair of (prompace-group types. This is indicated by an asterisk pre-
ceding the space-group number. This asterisk has to be sxindg a consequence, the number of four-dimensional
space-group types splitting into enantiomorphic pairgggion page 11 and page 52 of the book) reduces from 112
to 111. An erratum has been submittedia Cryst..

The only implication of this correction for the packa@eystCat is that the output of the function
DisplaySpaceGroupType( 4, 8, 1, 1, 2 );

had to be changed from
#I xSpace-group type (4,8,1,1,2); orbit size 2; fp-free

to
#I Space-group type (4,8,1,1,2); orbit size 2; fp-free

This has been done in the rele&3aP 4.3.

1.1 How to access the data of the book

Among others, the catalog offers functions which provideeas to the data listed in the Tables 1, 5, and 6 of [BB-
NWZz78]:

e The information on the crystal families listed in Table 1 ¢ereproduced using tlE splayCrystalFamily
function.

e Similarly, theDisplayCrystalSystemfunction can be used to reproduce the information on thearggstems
provided in Table 1.

e The information given in thé)-class headlines of Table 1 can be displayed byDtheplayQClass function,
whereas th&pGroupQClass function can be used to reproduce the presentations théissea in Table 1 for
theQ-class representatives.

e The information given in th&-class headlines of Table 1 will be covered by the resultt®@bisplayZClass
function, and the matrix generators of theclass representatives can be constructed by callinggbéroupz-
Class function.
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e TheDisplaySpaceGroupType and theDisplaySpaceGroupGenerators functions can be used to reproduce
all of the information on the space-group types that is ediin Table 1.

e The normalizers listed in Table 5 can be reproduced by ¢pllieNormalizerZClass function.

e Finally, theCharTableQClass function will compute the character tables listed in Tahle/Bereas the isomor-
phism types given in Table 6 may be obtained by callingdtheplayQClass function.

The display functions mentioned in the above list printtleeitput with different indentation. So, calling them in a
suitably nested loop, you may produce a listing in which tifermation about the objects of different type will be
properly indented as has been done in Table 1 of [BBNWZ78].

1.2 Representation of space groups

Probably the most important function in the catalog is3pe&ceGroupBBNWZ function which provides representatives
of the affine classes of space groups. A space group of diorenss represented by am + 1)-dimensional rational
matrix group as follows.

If Sis ann-dimensional space group, then each elersémSis an affine mapping: V — V of ann-dimensionaR-
vector spac® onto itself. Henca can be written as the product of an appropriate invertibkedr mapping : V — V
and a translation by some translation vetterV such that, if we write mappings from the left, we ha{e = g(v)+t
forallve V.

If we fix a basis ofV and then replace eache V by the column vector of its coefficients with respect to thadib
(and henc#/ by the isomorphic column vector spak&<!), we can describe the linear mappipmvolved ins by an
n x n matrix Mg € GL,(R) which acts by multiplication from the left on the column varstinR™?. Hence, if we
identify V with R™?, we haves(v) = Mgv + t for all v € R™1,

Moreover, if we extend each column vectoe R™? to a column[v], [1]] of lengthn + 1 by adding an entry 1 in the
last position and if we define am + 1) x (n+ 1) matrixMs = [[Mg, t], [0, 1]], we have][s(v)], [1]] = Ms[[V], [1]] for

all v € R™1, This means that we can represent the space gddnypthe isomorphic groum(S) = {Mg|s € S}. The
submatricedy occurring in the elements ®f(S) form ann x n matrix groupP(S), the “point group” ofM(S). In
fact, we can choose the basisRiF! such thaMgy € GLn(Z) andt € Q™ for all Ms € M(S). In particular, the space
group representatives that are normally used by the chygtabhers are of this form, and the book [BBNWZ78] uses
the same convention.

The representation described above is the one usually yse$tallographers. There is, however, an alternative to
the representation of the space group elements by matriche éorm[[Mg, t], [0, 1]] as described above. Instead of
considering the coefficient vectors as columns we may cengiem as rows. Then we can associate to each affine
mappings € San (n+ 1) x (n+ 1) matrix Mg = [[Mg, 0], [t', 1]] with My, € GLq(R) andt’ € R™" such that
[s(V),1] = [V, 1M, for all vV € R¥", and we may represeBtby the matrix groupM’(S) = {M|s € S}. Again, we

can choose the basis Bf*" such thaM, € GLy(Z) andt’ € Q™" for all Mg € M'(S).

From the mathematical point of view, both approaches arealgmt. In particularM(S) andM’(S) are isomorphic,
for instance via the isomorphismmappingMs € M(S) to (M¥)~1. Unfortunately, however, neither of the two is a
good choice for ouGAP catalog.

The first convention, using matrices which act on columnassctrom the left, is not consistent with the fact that
actions inGAP are usually from the right.

On the other hand, if we choose the second convention, wentarai problem with the names of the space groups
as introduced in [BBNWZ78]. Any such name does not just desche abstract isomorphism type of the respective
space groufs, but reflects properties of the matrix groddS). In particular, it contains as a leading part the name
of the Z-class of the associated point groB(S). Since the classification of space groups by affine equicalén
tantamount to their classification by abstract isomorphisii{S) lies in the same affine class 84S) and hence
should get the same nameld$S). But the point groufP(S) that occurs in that name is not alwagsequivalent to
the point grouP’(S) of M'(S). For example, the isomorphism: M(S) — M'(S) defined above maps tt#class
representative with the paramet¢8s7, 3, 2] (in the notation described below) to tieclass representative with the
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parameter§3, 7, 3, 3]. In other words: The space group names introduced for thepgid (S) in [BBNWZ78] lead to
confusing inconsistencies if assigned to the gradps).

In order to avoid this confusion we decided that the first emion is the lesser evil, and so tB&P catalog follows

the book. In particular, all functions listed in section Lide the convention of the book. The space groups, how-
ever, can be constructed in both representations, so thatséer can choose the one that seems more appropriate in
the particular situation. The functi®dpaceGroupOnLeftBBNWZ constructs a space group in the “crystallographic”
representation acting on the left, wher@asceGroupOnRightBBNWZ constructs a space group in the representation
acting on the right, as preferred by GAP. In order to avoidjlamction names (and in order to avoid mixing groups

in different representations), one can set one’s own deféth the functionSetCrystGroupDefaultAction (See
44.7.2), which takes as argument eitheftAction of RightAction. SpaceGroupBBNWZ then constructs a space
group in this default representation. Initially, the ddfagiRightAction.

The space groups constructed from the catalog are matnispgravhich in addition have the propefiyAf fineCryst-|J
GroupOnLeft (or IsAffineCrystGroupOnRight, respectively). The packageryst provides methods to compute
with such groupsCryst is necessary for any serious computation with space grdagzsuse the support of plain
GAP for infinite matrix groups (such as space groups) is verytérhi

Before we describe all available catalog functions in deta have to add two remarks.

Remark 1: The concepts used in this section are defined in chapter ic(Befnitions) of [BBNWZ78]. However,
note that the definition of the concept of a crystal systenemign page 16 of that book relies on the following
statement abou@-classes:

For aQ-classC there is a unique holohedk such that each f.u. group @is a subgroup of some f.u. group
in H, but is not a subgroup of any f.u. group belonging to a holohetismaller order.

This statement is correct for dimensions 1, 2, 3, and 4, andéh¢he definition of “crystal system” given on page
16 of [BBNWZ78] is known to be unambiguous for these dimensidHowever, there is a counterexample to this
statement in seven-dimensional space so that the defibitesarks down for some higher dimensions.

Therefore, the authors of the book have since proposed laceethis definition of “crystal system” by the following
much simpler one, which has been discussed in more detaIRW81]. To formulate it, we use the intersections of
Q-classes and Bravais flocks as introduced on page 17 of [BBRBAnd we define the classification of the set of
all Z-classes into crystal systems as follows:

Definition: A crystal system (introduced as an equivalence clasg-ofasses) consists of full geometric
crystal classes. Thg-classes of two (geometric) crystal classes belong to theesaystal system if and
only if these geometric crystal classes intersect the satnaf 8ravais flocks oZ-classes.

From this definition of a crystal system @fclasses one then obtains crystal systems of f.u. groupspazfe-group
types, and of space groups in the same manner as with thedprgakefinitions in the book.

The new definition is unambiguous for all dimensions. Moezoit can be checked from the tables in the book that it
defines the same classification as the old one for dimensijdhs31and 4.

It should be noted that the concept of crystal family is vellfined independently of the dimension if one uses the
“more natural” second definition of it at the end of page 17r&bwer, the first definition of crystal family on page 17
defines the same concept as the second one if the now propefssitiah of crystal system is used.

Remark 2: The second remark just concerns a different terminologhéntables of [BBNWZ78] and in the current
catalog. In group theory, the number of elements of a finisugrusually is called the “order” of the group. This
notation has been used throughout in the book. Here, hoyeeewill follow the GAP conventions and use the term
“size” instead.
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1.3 Crystal Families
NrCrystalFamilies( dim )

returns the number of crystal families in case of dimenslion It can be used to formulate loops over the crystal
families.

There are 4, 6, and 23 crystal families of dimension 2, 3, amdspectively.

gap> n := NrCrystalFamilies( 4 );
23

DisplayCrystalFamily( dim, family )

displays for the specified crystal family essentially thensanformation as is provided for that family in Table 1 of
[BBNWZ78], namely

e the family name,

the number of parameters,
e the common rational decomposition pattern,

the common real decomposition pattern,

the number of crystal systems in the family, and

the number of Bravais flocks in the family.

For details see [BBNWZ78].

gap> DisplayCrystalFamily( 4, 17 );

#I Family XVII: cubic orthogonal; 2 free parameters;

#I (Q-decomposition pattern 1+3; R-decomposition pattern 1+3;
#I 2 crystal systems; 6 Bravais flocks

gap> DisplayCrystalFamily( 4, 18 );

#I Family XVIII: octagonal; 2 free parameters;

#I Q-irreducible; R-decomposition pattern 2+2;

#I 1 crystal system; 1 Bravais flock

gap> DisplayCrystalFamily( 4, 21 );

#I Family XXI: di-isohexagonal orthogonal; 1 free parameter;
#I R-irreducible; 2 crystal systems; 2 Bravais flocks

1.4 Crystal Systems
NrCrystalSystems( dim )

returns the number of crystal systems in case of dimerdiionIt can be used to formulate loops over the crystal
systems.

There are 4, 7, and 33 crystal systems of dimension 2, 3, am$gdectively.
gap> n := NrCrystalSystems( 2 );
4

The following two functions are functions of crystal sysem

Each crystal system is characterized by a pdiim( system) wheredimis the associated dimension, asydtem s the
number of the crystal system.
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DisplayCrystalSystem( dim, system )

displays for the specified crystal system essentially theesaformation as is provided for that system in Table 1 of
[BBNWZ78], namely

e the number of)-classes in the crystal system and

¢ the identification number, i. e., the tripldifn, system, g-class) described below, of th@-class that is the holo-
hedry of the crystal system.

For details see [BBNWZ78].

gap> for sys in [ 1 .. 4 ] do DisplayCrystalSystem( 2, sys ); od;
#I Crystal system 1: 2 Q-classes; holohedry (2,1,2)
#I Crystal system 2: 2 Q-classes; holohedry (2,2,2)
#I Crystal system 3: 2 Q-classes; holohedry (2,3,2)
#I Crystal system 4: 4 Q-classes; holohedry (2,4,4)

1.5 Q-Classes
NrQClassesCrystalSystem( dim, system )

returns the number dp-classes within the given crystal system. It can be usedrtodtate loops over th@-classes.
The following five functions are functions ¢§-classes.

In general, the parameters characterizii@grelass will form a triple dim, system, g-class) wheredimis the associated
dimensionsystemis the number of the associated crystal system,cpddssis the number of th&-class within the
crystal system. However, in case of dimensions 2 or@;@ass may also be characterized by a pdiim( | T-number)
wherel T-number is the number in the International Tables for Crystallogmajplah95] of any space-group type lying
in (aZ-class of) thaQQ-class, or just by the Hermann-Mauguin symbol of any spaoceqgtype lying in (éZ-class of)
thatQ-class.

The Hermann-Mauguin symbols which we us&AP are the short Hermann-Mauguin symbols defined in the 1983
edition of the International Tables [Hah95], but any ocimgrindices are expressed by ordinary integers, and bars
are replaced by minus signs. For example, the Hermann-Mawsgmbol P42;m will be represented by the string
"P-421m".

DisplayQClass( dim, system, g-class )
DisplayQClass( dim, IT-number )
DisplayQClass( Hermann-Mauguin-symbol )

displays for the specifie@-class essentially the same information as is providedfar@-class in Table 1 of [BB-
NWZ78] (except for the defining relations given there), ngme

¢ the size of the groups in th@-class,

the isomorphism type of the groups in tQeclass,

the Hurley pattern,
o the rational constituents,

the number ofZ-classes in thé)-class, and

the number of space-group types in f@eclass.

For details see [BBNWZ78].
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gap> DisplayQClass( "p2" );

#I Q-class H (2,1,2): size 2; isomorphism type 2.1 = C2;

#I Q-constituents 2%(2,1,2); cc; 1 Z-class; 1 space group
gap> DisplayQClass( "R-3" );

#I Q-class (3,5,2): size 6; isomorphism type 6.1 = C6;

#I Q-constituents (3,1,2)+(3,4,3); ncc; 2 Z-classes; 2 space grps
gap> DisplayQClass( 3, 195 );

#1 Q-class (3,7,1): size 12; isomorphism type 12.5 = A4;

#I C-irreducible; 3 Z-classes; 5 space grps

gap> DisplayQClass( 4, 27, 4 );

#I Q-class H (4,27,4): size 20; isomorphism type 20.3 = D10xC2;
#I Q-irreducible; 1 Z-class; 1 space group

gap> DisplayQClass( 4, 29, 1 );

#I *Q-class (4,29,1): size 18; isomorphism type 18.3 = D6xC3;

#I R-irreducible; 3 Z-classes; 5 space grps

Note in the preceding examples that, as pointed out aboéetm “size” denotes the order of a representative group
of the specified)-class and, of course, not the (infinite) class length.

3» FpGroupQClass( dim, system, g-class )
FpGroupQClass( dim, IT-number )
» FpGroupQClass( Hermann-Mauguin-symbol )

v

returns a finitely presented gro#ép say, which is isomorphic to the groups in the specifiedlass.

The presentation of that group is the same as the corresgppdésentation given in Table 1 of [BBNWZ78] except
for the fact that its generators are listed in reverse oree. reason for this change is that, whenever the group in
guestion is solvable, the resulting generators form a pagsi€fined in section 45 in the reference manu&AP)

if they are numbered “from the top to the bottom”, and the enégtion is a power-commutator presentation. The
PcGroupQClass function described next will make use of this fact in ordecémstruct a pc group isomorphic o

Note that, for anyZ-class in the specifieQ-class, the matrix group returned by thetGroupZClass function (see
below) not only is isomorphic t&, but also its generators satisfy the defining relators.of

Besides of the usual componeniswill have an attributeCrystCatRecord, which is a record with component
parameters, which keeps a list of the parameters that specify the grerass.

gap> F := FpGroupQClass( 4, 20, 3 );
FpGroupQClass( 4, 20, 3 )

gap> Generators0fGroup( F );

[ £f1, £2 1]

gap> RelatorsOfFpGroup( F );

[ £172%£27-3, £276, £27-1xf1"-1*f2*xf1*f2"-4 ]
gap> Size( F );

12
gap> CrystCatRecord( F ) .parameters;
[ 4, 20, 3]

4» PcGroupQClass( dim, system, g-class )
» PcGroupQClass( dim, IT-number )
» PcGroupQClass( Hermann-Mauguin-symbol )

returns a pc group, say, isomorphic to the groups in the specifigelass, if these groups are solvable, or the value
fail (together with an appropriate warning), otherwise.
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P is constructed by first establishing a finitely presentedugras it would be returned by tpGroupQClass
function described above) and then constructing from isamiorphic pc group. If the underlying pcgs is not a prime
orders pcgs (see section 45), then it will be refined appatglyi (and a warning will be displayed).

Besides of the usual componenBswill have an attributeCrystCatRecord, which is a record with component
parameters, Which saves a list of the parameters that specify the gixetass.

gap> P := PcGroupQClass( 4, 31, 3 );

#I Warning: a non-solvable group can’t be represented as a pc group

fail

gap> P := PcGroupQClass( 4, 20, 3 );

#I Warning: the presentation has been extended to get a prime order pcgs
PcGroupQClass( 4, 20, 3 )

gap> Generators0fGroup( P );

[ f1, f2, £3 ]

gap> Size( P );

12
gap> CrystCatRecord( P ) .parameters;
[ 4, 20, 3]

CharTableQClass( dim, system, g-class )
CharTableQClass( dim, IT-number )
CharTableQClass ( Hermann-Mauguin-symbol )

returns the character table say, of a representative group of4eclass of) the specifie@-class.

Although the set of characters can be considered as anamasf the specified)-class, the resulting table will
depend on the order in whidBAP sorts the conjugacy classes of elements and the irredudibl@cters and hence,
in general, will not coincide with the corresponding tablegented in [BBNWZ78].

CharTableQClass proceeds as follows. If the groups in the giv@rclass are solvable, then it first calls the-
GroupQClass andRefinedPcGroup functions to get a suitable isomorphic pc group, and thealis theCharac-
terTable function to compute the character table of that pc grouphéndase of the fiv€)-classes of dimension 4
whose groups are not solvable, it first calls HperoupQClass function to get an isomorphic finitely presented group,
then it constructs a specially chosen faithful permutatepresentation of low degree for that group, and finally it
determines the character table of the resulting permungtioup again by calling theharacterTable function.

In general, the above strategy will be much more efficienh tthee alternative possibilities of calling ti#harac-
terTable function for a finitely presented group provided by tgroupQClass function or for a matrix group
provided by theMatGroupZClass function.

gap> T := CharTableQClass( 4, 20, 3 );;
gap> Display( T );
CharTableQClass( 4, 20, 3 )

2 2 2 1 1 2 2
31 .1 1 . 1

la 4a 6a 3a 4b 2a
2P l1la 2a 3a 3a 2a 1la
3P la 4b 2a la 4a 2a
5P la 4a 6a 3a 4b 2a
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X.1 1 1 1 1 1 1
X.2 1 -1 1 1-1 1
X.3 1 A-1 1 -A -1
X.4 1 -A-1 1 A -1
X.5 2 1 -1 -2
X.6 2 -1 -1 2
A = E(4)
= ER(-1) =i
1.6 Z-Classes

NrZClassesQClass( dim, system, g-class )
NrZClassesQClass( dim, |T-number )
NrZClassesQClass( Hermann-Mauguin-symbol )

returns the number df-classes within the give@-class. It can be used to formulate loops overZhelasses.
The following functions are functions &-classes.

In general, the parameters characterizifyelass will form a quadrupled{m, system, g-class, z-class) wheredimis
the associated dimensimystemis the number of the associated crystal sysigeiassis the number of the associated
Q-class within the crystal system, amgtlass is the number of th&-class within theQ-class. However, in case of
dimensions 2 or 3, &-class may also be characterized by a pdim( | T-number) wherelT-number is the number
in the International Tables [Hah95] of any space-group typey in thatZ-class, or just by the Hermann-Mauguin
symbol of any space-group type lying in tt#tclass.

DisplayZClass( dim, system, g-class, z-class )
DisplayZClass( dim, IT-number )
DisplayZClass( Hermann-Mauguin-symbol )

displays for the specified-class essentially the same information as is providedhatZ-class in Table 1 of [BB-
NWZ78] (except for the generating matrices of a class repriegive group given there), namely

e for dimensions 2 and 3, the Hermann-Mauguin symbol of a ssative space-group type which belongs to
thatZ-class,

e the Bravais type,

e some decomposability information,

e the number of space-group types belonging taZheass,
o the size of the associated cohomology group.

For details see [BBNWZ78].

gap> DisplayZClass( 2, 3 );

#I Z-class (2,2,1,1) = Z(pm): Bravais type II/I; fully Z-reducible;
#1 2 space groups; cohomology group size 2

gap> DisplayZClass( "F-43m" );

#I Z-class (3,7,4,2) = Z(F-43m): Bravais type VI/II; Z-irreducible;
#I 2 space groups; cohomology group size 2

gap> DisplayZClass( 4, 2, 3, 2 );

#I Z-class B (4,2,3,2): Bravais type II/II; Z-decomposable;

#1 2 space groups; cohomology group size 4

gap> DisplayZClass( 4, 21, 3, 1 );

#I xZ-class (4,21,3,1): Bravais type XVI/I; Z-reducible;

#I 1 space group; cohomology group size 1



v

a»
>
>

Section 6. Z-Classes 11

MatGroupZClass( dim, system, g-class, z-class )
MatGroupZClass( dim, IT-number )
MatGroupZClass ( Hermann-Mauguin-symbol )

returns adim x dim matrix groupM, say, which is a representative of the speciffedlass. Its generators satisfy the
defining relators of the finitely presented group which magdmputed by calling thBpGroupQClass function (see
above) for the)-class which contains the givéficlass.

The generators d¥l are the same matrices as those given in Table 1 of [BBNWZ78{e Nhowever, that they will
be listed in reverse order to keep them in parallel to theratisyenerators provided by tReGroupQClass function
(see above).

Besides of the usual componeritswill have an attribut€rystCatRecord, which is a record with two components.
The first component iparameters, which saves a list of the parameters that specify the gé«etass. The second
component isonjugator, whose value is the identity element M. Its purpose is to make the resulting record
consistent with those returned by thermalizerZClass or ZClassRepsDadeGroup functions described below.

gap> M := MatGroupZClass( 4, 20, 3, 1 );
MatGroupZClass( 4, 20, 3, 1 )

gap> for g in Generators0fGroup( M ) do

> Print( "\n" ); PrintArray( g ); od; Print( "\n" );

tr o 1, o, 01,
[ -1, 0, 0, 01,
[ o, o, -1, -11,
[ o, o o0, 111
L[ -1, 0, 0, 01,
[ o, -1, 0, 01,
[ o, o, -1, -11,
[ o, o 1, o011

gap> Size( M );

12

gap> CrystCatRecord( M ) .parameters;
[ 4, 20, 3, 1]

NormalizerZClass( dim, system, g-class, zclass )
NormalizerZClass( dim, |T-number )
NormalizerZClass( Hermann-Mauguin-symbol )

returns the normalizeM, say, inGL(dim, Z) of the representativdim x dimmatrix group which is constructed by the
MatGroupZClass function (see above).

If the size ofN is finite, thenN again lies in somé-class. In this casé\ will have an attribute€rystCatRecord,
which is a record with two componengsarameters andconjugator. These contain, respectively, the list of pa-
rameters of thak-class, and a matrig € GL(dim, Z), such thalN = g~'Rg, whereR is the representative group of
thatZ-class.

gap> N := NormalizerZClass( 4, 20, 3, 1 );
NormalizerZClass( 4, 20, 3, 1)

gap> for g in Generators0fGroup( N ) do

> Print( "\n" ); PrintArray( g ); od; Print( "\n" );
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rr 1 o, o0, 01,
[ o, 1, o0, o071,
[ o, o, 1, 01,
[ o, o0, -1, -111

rr 1 o, o0, 01,
[ o, -1, o0, 01,
[ o, o0, -1, -11,
[ o, o, , 011

rc o, 1, o0, 01,
[ -1, o0, o0, 01,
[ o, o, 1, 01,
[ o, o0, 0, 111

rr -1, o, o, 01,
[ o, -1, o0, o071,
[ o, o0, -1, 01,
[ o, 0, 0, -111

gap> Size( N );

96

gap> CrystCatRecord( N ) .parameters;

[ 4, 20, 22, 1]

gap> CrystCatRecord( N ).conjugator = One( N );
true

gap> L := NormalizerZClass( 3, 42 );
NormalizerZClass( 3, 3, 2, 4 )

gap> Size( L );

16

gap> CrystCatRecord( L ) .parameters;

[3,4,7, 2]

gap> CrystCatRecord( L ).conjugator;
tcto,o0,-11,01,0,01, [0, -1, -111
gap> M := NormalizerZClass( "C2/m" );

<matrix group of size infinity with 5 generators>
gap> Size( M );

infinity

gap> HasCrystCatRecord( M );

false

1.7 Dade groups

Some of theZ-classes of dimensiot, say, are “maximal” in the sense that the groups in thesasetagre maximal
finite subgroups oGL(d, Z). Generalizing a term which is being used for dimension 4, alktlee representatives of
these maximal-classes th®ade groupsof dimensiond.

1» NrDadeGroups( dim )

returns the number of Dade groups of dimengion. It can be used to formulate loops over the Dade groups.
There are 2, 4, and 9 Dade groups of dimension 2, 3, and 4,atbsgg.
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gap> NrDadeGroups( 4 );
9

DadeGroup( dim, n )

returns thenth Dade group of dimensiodim.

gap> D := DadeGroup( 4, 7 );
MatGroupZClass( 4, 31, 7, 2 )

DadeGroupNumbersZClass( dim, system, g-class, zclass )
DadeGroupNumbersZClass( dim, IT-number )
DadeGroupNumbersZClass ( Hermann-Mauguin-symbol )

returns the set of all those integerdor which thenjth Dade group of dimensiodim contains a subgroup which, in
GL(dim, Z), is conjugate to the representative group of the giiesiass.

gap> dadeNums := DadeGroupNumbersZClass( 4, 4, 1, 2 );
[ 1, 5, 81

gap> for d in dadeNums do

> D := DadeGroup( 4, d );

> Print( D, " of size ", Size( D ), "\n" );

> od;

MatGroupZClass( 4, 20, 22, 1 ) of size 96
MatGroupZClass( 4, 30, 13, 1 ) of size 288
MatGroupZClass( 4, 32, 21, 1 ) of size 384

ZClassRepsDadeGroup( dim, system, g-class, z-class, n )
ZClassRepsDadeGroup( dim, IT-number, n )
ZClassRepsDadeGroup ( Hermann-Mauguin-symbol, n )

determines in theth Dade group of dimensiodim all those conjugacy classes whose groups ar&lifdim, Z),

conjugate to thé&-class representative gro®p say, of the giverZ-class. It returns a list of representative groups of
these conjugacy classes.

Let M be any group in the resulting lisk then has an attributerystCatRecord, which is a record with two
components. The compongrirameters is the list of parameters of th&-class ofR, andconjugator is a suitable
matrix g from GL(dim, Z), respectively, such that equalsyRg.

gap> DadeGroupNumbersZClass( 2, 2, 1, 2 );
[1, 2]

gap> ZClassRepsDadeGroup( 2, 2, 1, 2, 1 );

[ MatGroupZClass( 2, 2, 1, 2 )"[ [0, 11, [ -1, 0111

gap> ZClassRepsDadeGroup( 2, 2, 1, 2, 2 );

[ MatGroupZClass( 2, 2, 1, 2)"[ [ 1, -1 1, [0, -111,
MatGroupZClass( 2, 2, 1, 2 )"[ [ 1,01, [ -1, 1111

gap> R := last[2];;

gap> CrystCatRecord( R ) .parameters;
[2, 2,1, 2]

gap> CrystCatRecord( R ).conjugator;
tft1,01, [-1,11]
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1.8 Space groups and space group types

NrSpaceGroupTypesZClass( dim, system, g-class, z-class )
NrSpaceGroupTypesZClass( dim, IT-number )
NrSpaceGroupTypesZClass( Hermann-Mauguin-symbol )

returns the number of space-group types within the giraiass. It can be used to formulate loops over the space-
group types.

gap> N := NrSpaceGroupTypesZClass( 4, 4, 1, 1 );
13

The following functions are functions of space-group types

In general, the parameters characterizing a space-grpepaifl form a quintuple dim, system, g-class, z-class, sg-
type) wheredim is the associated dimensiasystem is the number of the associated crystal systgroass is the
number of the associaté@-class within the crystal systemclass is the number of th&-class within theQ-class,
andsg-typeis the space-group type within tieclass. However, in case of dimensions 2 or 3, you may inspadify
aZ-class by a pairdim, IT-number) or by its Hermann-Mauguin symbol (as described above)nThe function will
handle the first space-group type within ti#atlass, i.e.sg-type = 1, that is, the corresponding symmorphic space
group (split extension).

DisplaySpaceGroupType( dim, system, g-class, z-class, sg-type )
DisplaySpaceGroupType( dim, IT-number )
DisplaySpaceGroupType ( Hermann-Mauguin-symbol )

displays for the specified space-group type some of thernmdtion which is provided for that space-group type in
Table 1 of [BBNWZ78], namely

¢ the orbit size associated with that space-group type and,
o for dimensions 2 and 3, tH@-number and the Hermann-Mauguin symbol.

For details see [BBNWZ78].

gap> DisplaySpaceGroupType( 2, 17 );

#I Space-group type (2,4,4,1,1); IT(17) = pbmm; orbit size 1
gap> DisplaySpaceGroupType( "Pm-3" );
#I Space-group type (3,7,2,1,1); IT(200) = Pm-3; orbit size 1

gap> DisplaySpaceGroupType( 4, 32, 10, 2, 4 );

#I xSpace-group type (4,32,10,2,4); orbit size 18

gap> DisplaySpaceGroupType( 3, 6, 1, 1, 4 );

#I xSpace-group type (3,6,1,1,4); IT(169) = P61, IT(170) = P65;
#1 orbit size 2; fp-free

DisplaySpaceGroupGenerators( dim, system, g-class, zclass, sg-type)
DisplaySpaceGroupGenerators( dim, IT-number )
DisplaySpaceGroupGenerators ( Hermann-Mauguin-symbol )

displays the non-translation generators of a represeatapiace group of the specified space-group type without
actually constructing that matrix group. The generatoesgiren in the representation acting from the left on column
vectors.

In more details: Leh = dim be the given dimension, and ey, . . ., M; be the generators of the representative n
matrix group of the giverZ-class (this is the group which you will get if you call tHetGroupZClass function
(see above) for that-class). Then, for the given space-group type SibeceGroupOnLef tBBNWZ function described
below will construct as representative of that space-gtgpe an(n + 1) x (n+ 1) matrix group which is generated
by then translations which are induced by the (standard) basior&of then-dimensional Euclidian space, and
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Mi

o 1|
t; aren-columns with rational entries. T splaySpaceGroupGenerators function saves time by not constructing
the group, but just displaying thrematricess,, ..., S.

additional matrice§,, . .., S ofthe formS = where then x n submatrice$/; are as defined above, and the

gap> DisplaySpaceGroupGenerators( "P61" );
#I Non-translation generators of SpaceGroupOnLeftBBNWZ( 3, 6, 1, 1, 4 )

L -1, 0, 0, 01,
L 0, -1, 0, 01,
[ 0, 0, 1, 1/21,
L 0, 0, 0, 111
([ 0, -1, 0, 01,
L 1, -1, 0, 01,
[ 0, 0, 1, 1/31,
L 0, 0, 0, 111

SpaceGroupOnLeftBBNWZ( dim, system, g-class, z-class, sg-type )
SpaceGroupOnLeftBBNWZ( dim, IT-number )
SpaceGroupOnLef tBBNWZ ( Hermann-Mauguin-symbol )

returns a representativg, of the space group type specified by the argumedis. returned in the form of an
AffineCrystGroupOnLeft, which acts from the left on column vectors (see also the rigim of the Dis-
playSpaceGroupGenerators function above). The packa@eyst provides methods for the computation with space
groups.

gap> S := SpaceGroupOnLeftBBNWZ( "P61" );
SpaceGroupOnLeftBBNWZ( 3, 6, 1, 1, 4 )

gap> for s in Generators0fGroup( S ) do

> Print( "\n" ); PrintArray( s ); od; Print( "\n" );

[ -1, 0, 0, 01,
[ 0, -1, 0, 01,
[ 0, 0, 1, 1/21,
[ 0, 0, 0, 11711

[ o, -1, 0, 01,
[ 1, -1, 0, 01,
[ 0, 0, 1, 1/31,
[ 0, 0, 0, 111

[ 1, o, o0, 11,

[ o, 1, 0, 01,
[ o, 0, 1, 01,
[ o, 0, O, 111

(c 1, o, o, 01,
[ o, 1, 0, 11,
[ o, 0, 1, 01,
[ o, 0, O, 111
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gap> CrystCatRecord( S ) .parameters;
[3,6, 1,1, 4]

The resulting group has an attributeystCatRecord, whose componergarameters specifies the given space-
group type.

5» SpaceGroupOnRightBBNWZ( dim, system, g-class, z-class, sg-type )
» SpaceGroupOnRightBBNWZ( dim, IT-number )
» SpaceGroupOnRightBBNWZ ( Hermann-Mauguin-symbol )
» SpaceGroupOnRightBBNWZ( S )

returns a representativé, of the space group type specified by the arguménts returned in the form of an
AffineCrystGroupOnRight, which acts from the right on row vectors. The generator3 afre the transposed
generators (in the same order) of the corresponsgijrrgeGroupOnLeftBBNWZ, S, specified by the same arguments.
The space grou$is also accepted as argument. The pack@yst provides methods for the computation with space
groups.

gap> T := SpaceGroupOnRightBBNWZ( S );
SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 )
gap> for m in Generators0fGroup( T ) do
> Print( "\n" ); PrintArray( m ); od; Print( "\n" );

[ -1, 0, 0, 01,
[ 0, -1, 0, 01,
[ 0, 0, 1, 01,
[ 0, 0, 1/2, 11711

[ 0, 1, 0, 01,
[ -1, -1, 0, 01,
L 0, 0, 1, 01,
[ 0, 0, 1/3, 11711

(L[ 1, 0o, 0, 01,

[ o, 1, 0, 01,
[ o, O, 1, 01,
[ 1, 0, 0, 111

(c 1, o, o, 01,
[ o, 1, 0, 01,
[ o, 0, 1, 01,
[ 0o, 1, 0, 111

L[l 1, 0o, 0, 01,
[ o, 1, 0, 01,
[ o, 0, 1, 01,
[ o, 0, 1, 111
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SpaceGroupBBNWZ( dim, system, g-class, z-class, sg-type )
SpaceGroupBBNWZ( dim, IT-number )
SpaceGroupBBNWZ ( Hermann-Mauguin-symbol )

calls eitherSpaceGroupOnLeftBBNWZ Or SpaceGroupOnRightBBNWZ with the same arguments, depending on the
value of the variabl€rystGroupDefaultAction.

FpGroupSpaceGroupBBNWZ( S )

returns a finitely presented gro@ say, which is isomorphic t8, whereSis expected to be a space group from the
BBNWZ catalog (acting from the left or from the right). It ifi@sen such that there is an isomorphism fréno
Swhich maps each generator Gfonto the corresponding generator®fThis means, in particular, that the matrix
generators o8 satisfy the relators ob. If the factor group ofS by its translation normal subgroup is solvable, then
the presentation returned is a polycyclic power commuiatesentation.

gap> G := FpGroupSpaceGroupBBNWZ( S );

FpGroupSpaceGroupOnLeftBBNWZ( 3, 6, 1, 1, 4 )

gap> for rel in Relators0fFpGroup( G ) do Print( rel, "\n" ); od;

gl 2xgh~-1

g2"3xg5"-1

g27-1xgl " -1*xg2x*xgl

g37-1*xgl ™ -1%g3*gl*g3~2

g3"-1%g2 " -1*g3*xg2xgd*g3~2

g4~ -1xgl~-1*gdxglxgd~2

g4"-1xg2 " -1xgl*xgl*xgld*xg3~-1

g4~ -1xg3 " -1xgl*g3

gb7-1*%gl~-1*gbx*gl

gbT-1%g2~-1%ghbxg2

gb -1%g3~-1%gb*g3

gb™-1%gd~-1%gbxgl

gap> # Verify that the matrix generators of S satisfy the relators of G.
gap> ForAll( RelatorsOfFpGroup( G ), rel -> One(S) =

> MappedWord( rel, FreeGenerators0fFpGroup(G), GeneratorsO0fGroup(S) ) );
true
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