Class eos_had_ddc (o2scl)¶
-
class
o2scl
::
eos_had_ddc
: public o2scl::eos_had_eden_base¶ Relativistic mean field EOS with density dependent couplings.
Based on Typel99.
- Idea for Future:
Implement the finite temperature EOS properly.
Masses
-
double
mnuc
¶ nucleon mass
-
double
ms
¶ \( \phi \) mass (in \( \mathrm{fm}^{-1} \) )
-
double
mw
¶ \( A_{\omega} \) mass (in \( \mathrm{fm}^{-1} \) )
-
double
mr
¶ \( A_{\rho} \) mass (in \( \mathrm{fm}^{-1} \) )
Parameters for couplings
-
double
Gs
¶ The coupling \( \Gamma_{\sigma}(\rho_{\mathrm{sat}}) \).
-
double
Gw
¶ The coupling \( \Gamma_{\omega}(\rho_{\mathrm{sat}}) \).
-
double
Gr
¶ The coupling \( \Gamma_{\rho}(\rho_{\mathrm{sat}}) \).
-
double
as
¶ \( a_{\sigma} \)
-
double
aw
¶ \( a_{\omega} \)
-
double
ar
¶ \( a_{\rho} \)
-
double
bs
¶ \( b_{\sigma} \)
-
double
bw
¶ \( b_{\omega} \)
-
double
cs
¶ \( c_{\sigma} \)
-
double
cw
¶ \( c_{\omega} \)
-
double
ds
¶ \( d_{\sigma} \)
-
double
dw
¶ \( d_{\omega} \)
-
double
rho0
¶
-
fermion_zerot
fzt
¶ Zero-temperature fermion thermodynamics.
-
eos_had_ddc
()¶
-
int
calc_e
(fermion &n, fermion &p, thermo &th)¶ Equation of state as a function of the densities.
-
int
calc_eq_e
(fermion &neu, fermion &p, double sig, double ome, double rho, double &f1, double &f2, double &f3, thermo &th)¶ Equation of state and meson field equations as a function of the density.
This calculates the pressure and energy density as a function of \( \mu_n, \mu_p, \phi, A_{\omega}, A_{\rho} \) . When the field equations have been solved,
f1
,f2
, andf3
are all zero.- Todo:
Is the thermodynamic identity is satisfied even when the field equations are not solved? Check this.
-
const char *
type
()¶ Return string denoting type (“eos_had_ddc”)