Class eos_had_hlps (o2scl)

O2scl_eos : Class List

class o2scl::eos_had_hlps : public o2scl::eos_had_eden_base

Schematic EOS from Hebeler et al.

The energy per baryon is

\[ E/A = \left( 3 \pi^2 n_0/2 \right)^{2/3} \frac{1}{2 M} \left\{ \frac{3}{5} \left[ x^{5/3} + (1-x)^{5/3} \right] (2 u)^{2/3}- [(2 \alpha - 4 \alpha_L) x (1-x)+\alpha_L] u + \left[ (2 \eta - 4 \eta_L) x (1-x) + \eta_L \right] u^{\gamma} \right\} \]
where \( u = n/n_0 \) .

One can fix the values of \( \alpha, \eta, \) and \( \gamma \) by the requirement that the pressure is zero at saturation and by fixing the binding energy and incompressibility.

Note that the original reference has a typo in the pressure in Eq. 3. The \( 2/5 \) factor in front should be \( 1/5 \) .

See Ref. Hebeler13eo .

Constants (all unitless)

double gamma
double alpha
double eta
double alphaL
double etaL
eos_had_hlps()
~eos_had_hlps()
void fix_coeffs(double M, double local_n0, double B, double K)

Fix ‘alpha’, ‘eta’ and ‘gamma’ from saturation properties.

All inputs must be in \( \mathrm{fm}^{-1} \). This employs a simple iterative method that may not always converge.

void fix_neutron_matter(double M, double local_n0, double Eneut, double dEneut)

Fix ‘alphaL’ and ‘etaL’ from neutron matter EOS and its derivative.

The parameters M and Eneut must be in \( \mathrm{fm}^{-1} \) and dEneut must be in \( \mathrm{fm}^{2} \)

void fix_SL(double M, double local_n0, double S, double L)
int calc_e(fermion &ln, fermion &lp, thermo &lth)

Equation of state as a function of density.

const char *type()

Return string denoting type (“eos_had_hlps”)

Protected Attributes

quadratic_real_coeff_gsl quad

To solve quadratic equation for ‘gamma’.