Package ml.dmlc.xgboost4j.java
Class XGBoost
- java.lang.Object
-
- ml.dmlc.xgboost4j.java.XGBoost
-
public class XGBoost extends Object
trainer for xgboost- Author:
- hzx
-
-
Constructor Summary
Constructors Constructor Description XGBoost()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static String[]
crossValidation(DMatrix data, Map<String,Object> params, int round, int nfold, String[] metrics, IObjective obj, IEvaluation eval)
Cross-validation with given parameters.static Booster
loadModel(InputStream in)
Load a new Booster model from a file opened as input stream.static Booster
loadModel(String modelPath)
load model from modelPathstatic Booster
train(DMatrix dtrain, Map<String,Object> params, int round, Map<String,DMatrix> watches, float[][] metrics, IObjective obj, IEvaluation eval, int earlyStoppingRound)
Train a booster given parameters.static Booster
train(DMatrix dtrain, Map<String,Object> params, int round, Map<String,DMatrix> watches, float[][] metrics, IObjective obj, IEvaluation eval, int earlyStoppingRounds, Booster booster)
Train a booster given parameters.static Booster
train(DMatrix dtrain, Map<String,Object> params, int round, Map<String,DMatrix> watches, IObjective obj, IEvaluation eval)
Train a booster given parameters.
-
-
-
Method Detail
-
loadModel
public static Booster loadModel(String modelPath) throws XGBoostError
load model from modelPath- Parameters:
modelPath
- booster modelPath (model generated by booster.saveModel)- Throws:
XGBoostError
- native error
-
loadModel
public static Booster loadModel(InputStream in) throws XGBoostError, IOException
Load a new Booster model from a file opened as input stream. The assumption is the input stream only contains one XGBoost Model. This can be used to load existing booster models saved by other xgboost bindings.- Parameters:
in
- The input stream of the file, will be closed after this function call.- Returns:
- The create boosted
- Throws:
XGBoostError
IOException
-
train
public static Booster train(DMatrix dtrain, Map<String,Object> params, int round, Map<String,DMatrix> watches, IObjective obj, IEvaluation eval) throws XGBoostError
Train a booster given parameters.- Parameters:
dtrain
- Data to be trained.params
- Parameters.round
- Number of boosting iterations.watches
- a group of items to be evaluated during training, this allows user to watch performance on the validation set.obj
- customized objectiveeval
- customized evaluation- Returns:
- The trained booster.
- Throws:
XGBoostError
-
train
public static Booster train(DMatrix dtrain, Map<String,Object> params, int round, Map<String,DMatrix> watches, float[][] metrics, IObjective obj, IEvaluation eval, int earlyStoppingRound) throws XGBoostError
Train a booster given parameters.- Parameters:
dtrain
- Data to be trained.params
- Parameters.round
- Number of boosting iterations.watches
- a group of items to be evaluated during training, this allows user to watch performance on the validation set.metrics
- array containing the evaluation metrics for each matrix in watches for each iterationearlyStoppingRound
- if non-zero, training would be stopped after a specified number of consecutive increases in any evaluation metric.obj
- customized objectiveeval
- customized evaluation- Returns:
- The trained booster.
- Throws:
XGBoostError
-
train
public static Booster train(DMatrix dtrain, Map<String,Object> params, int round, Map<String,DMatrix> watches, float[][] metrics, IObjective obj, IEvaluation eval, int earlyStoppingRounds, Booster booster) throws XGBoostError
Train a booster given parameters.- Parameters:
dtrain
- Data to be trained.params
- Parameters.round
- Number of boosting iterations.watches
- a group of items to be evaluated during training, this allows user to watch performance on the validation set.metrics
- array containing the evaluation metrics for each matrix in watches for each iterationearlyStoppingRounds
- if non-zero, training would be stopped after a specified number of consecutive goes to the unexpected direction in any evaluation metric.obj
- customized objectiveeval
- customized evaluationbooster
- train from scratch if set to null; train from an existing booster if not null.- Returns:
- The trained booster.
- Throws:
XGBoostError
-
crossValidation
public static String[] crossValidation(DMatrix data, Map<String,Object> params, int round, int nfold, String[] metrics, IObjective obj, IEvaluation eval) throws XGBoostError
Cross-validation with given parameters.- Parameters:
data
- Data to be trained.params
- Booster params.round
- Number of boosting iterations.nfold
- Number of folds in CV.metrics
- Evaluation metrics to be watched in CV.obj
- customized objective (set to null if not used)eval
- customized evaluation (set to null if not used)- Returns:
- evaluation history
- Throws:
XGBoostError
- native error
-
-